Pulsed nuclear thermal rocket

Last updated
A sequence for a stationary-pulsed-stationary maneuver for a pulsed thermal nuclear rocket. During the stationary mode (working at constant nominal power), the fuel temperature is always constant (solid black line), and the propellant is coming cold (blue dotted lines) heated in the chamber and exhausted in the nozzle (red dotted line). When amplification in thrust or specific impulse is required, the nuclear core is "switched on" to a pulsed mode. In this mode, the fuel is continuously quenched and instantaneously healed by the pulses. Once the requirements for high thrust and specific impulse are not required, the nuclear core is "switched on" to the initial stationary mode. PULSEDSTA.jpg
A sequence for a stationary-pulsed-stationary maneuver for a pulsed thermal nuclear rocket. During the stationary mode (working at constant nominal power), the fuel temperature is always constant (solid black line), and the propellant is coming cold (blue dotted lines) heated in the chamber and exhausted in the nozzle (red dotted line). When amplification in thrust or specific impulse is required, the nuclear core is "switched on" to a pulsed mode. In this mode, the fuel is continuously quenched and instantaneously healed by the pulses. Once the requirements for high thrust and specific impulse are not required, the nuclear core is "switched on" to the initial stationary mode.

A pulsed nuclear thermal rocket is a type of nuclear thermal rocket (NTR) concept developed at the Polytechnic University of Catalonia, Spain, and presented at the 2016 AIAA/SAE/ASEE Propulsion Conference for thrust and specific impulse (Isp) amplification in a conventional nuclear thermal rocket. [1]

Contents

The pulsed nuclear thermal rocket is a bimodal rocket able to work in a stationary (at constant nominal power as in a conventional NTR), and as well as a pulsed mode as a TRIGA-like reactor, making possible the production of high power and an intensive neutron flux in short time intervals. In contrast to nuclear reactors where velocities of the coolant are no larger than a few meters per second and thus, typical residence time is on seconds, however, in rockets chambers with subsonic velocities of the propellant around hundreds of meters per second, residence time are around to : and then a long power pulse translates into an important gain in energy in comparison with the stationary mode. The gained energy by pulsing the nuclear core can be used for thrust amplification by increasing the propellant mass flow, or using the intensive neutron flux to produce a very high specific impulse amplification – even higher than the fission-fragment rocket, wherein the pulsed rocket the final propellant temperature is only limited by the radiative cooling after the pulsation.

Statement of the concept

A rough calculation for the energy gain by using a pulsed thermal nuclear rocket in comparison with the conventional stationary mode is as follows. The energy stored into the fuel after a pulsation is the sensible heat stored because the fuel temperature increase. This energy may be written as

where:

is the sensible heat stored after pulsation,
is the fuel heat capacity,
is the fuel mass,
is the temperature increase between pulsations.

On the other hand, the energy generated in the stationary mode, i.e., when the nuclear core operates at nominal constant power is given by

where:

is the linear power of the fuel (power per length of fuel),
is the length of the fuel,
is the residence time of the propellant in the chamber.

Also, for the case of cylindrical geometries for the nuclear fuel we have

and the linear power given by [2]

Where:

is the radius of the cylindrical fuel,
the fuel density,
the fuel thermal conductivity,
is the fuel temperature at the center line,
is the surface or cladding temperature.

Therefore, the energy ratio between the pulsed mode and the stationary mode, yields

Where the term inside the bracket, is the quenching rate.

Typical average values of the parameters for common nuclear fuels as MOX fuel or uranium dioxide are: [3] heat capacities, thermal conductivity and densities around , and , respectively., with radius close to , and the temperature drop between the center line and the cladding on or less (which result in linear power on . With these values the gain in energy is approximately given by:

where is given in . Because the residence time of the propellant in the chamber is on to considering subsonic velocities of the propellant of hundreds of meters per second and meter chambers, then, with temperatures differences on or quenching rates on energy amplification by pulsing the core could be thousands times larger than the stationary mode. More rigorous calculations considering the transient heat transfer theory shows energy gains around hundreds or thousands times, i.e., .

Quenching rates on are typical in the technology for production of amorphous metal, where extremely rapid cooling in the order of are required.

Direct thrust amplification

The most direct way to harness the amplified energy by pulsing the nuclear core is by increasing the thrust via increasing the propellant mass flow.

Increasing the thrust in the stationary mode -where power is fixed by thermodynamic constraints, is only possible by sacrificing exhaust velocity. In fact, the power is given by

where is the power, is the thrust and the exhaust velocity. On the other hand, thrust is given by

where is the propellant mass flow. Thus, if it is desired to increase the thrust, say, n-times in the stationary mode, it will be necessary to increase -times the propellant mass flow, and decreasing -times the exhaust velocity. However, if the nuclear core is pulsed, thrust may be amplified -times by amplifying the power -times and the propellant mass flow -times and keeping constant the exhaust velocity.

Isp amplification

Pulsed nuclear thermal rocket unit cell concept for Isp amplification. In this cell, hydrogen-propellant is heated by the continuous intense neutronic pulses in the propellant channels. At the same time, the unwanted energy from the fission fragments is removed by a solitary cooling channel with lithium or other liquid metal. PulsedrocketAri.jpg
Pulsed nuclear thermal rocket unit cell concept for Isp amplification. In this cell, hydrogen-propellant is heated by the continuous intense neutronic pulses in the propellant channels. At the same time, the unwanted energy from the fission fragments is removed by a solitary cooling channel with lithium or other liquid metal.

The attainment of high exhaust velocity or specific impulse (Isp) is the first concern. The most general expression for the Isp is given by [4]

being a constant, and the temperature of the propellant before expansion. However, the temperature of the propellant is related directly with the energy as , where is the Boltzmann constant. Thus,

being a constant.

In a conventional stationary NTR, the energy for heating the propellant is almost from the fission fragments which encompass almost 95% of the total energy, and the faction of energy from prompt neutrons is only around 5%, and therefore, in comparison, is almost negligible. However, if the nuclear core is pulsed it is able to produce times more energy than the stationary mode, and then the fraction of prompt neutrons or [ why? ][ citation needed ] could be equal or larger than the total energy in the stationary mode. Because fast neutrons created in fission events have very high neutron temperature (2 MeV or 20,000 km/s on average), they are capable of exchanging very large amounts of kinetic energy. Neutrons also exchange kinetic energy much more readily with nucleons of similar mass, so low molar mass propellant can absorb most of it while the heavy atoms in fuel are mostly unaffected. This allows temperatures to be obtained in the propellant that are higher than in the fuel, potentially by orders of magnitude, enabling Isp far beyond what a standard nuclear thermal rocket is capable of.

In summary, if the pulse generates times more energy than the stationary mode, the Isp amplification is given by

Where:

is the amplified specific impulse,
the specific impulse in the stationary mode,
the fraction of prompt neutrons,
the energy amplification by pulsing the nuclear core.

With values of between to and prompt neutron fractions around , [5] , [6] the hypothetical amplification attainable makes the concept specially interesting for interplanetary spaceflight.

Advantages of the design

There are several advantages relative to conventional stationary NTR designs. Because the neutron energy is transported as kinetic energy from the fuel into the propellant, then a propellant hotter than the fuel is possible, and therefore the is not limited to the maximum temperature permissible by the fuel, i.e., its melting temperature.

The other nuclear rocket concept which allows a propellant hotter than the fuel is the fission fragment rocket. Because it directly uses the fission fragments as a propellant, it can also achieve a very high specific impulse.

Other considerations

For amplification, only the energy from prompt neutrons, and some prompt gamma energy, is used for this purpose. The rest of the energy, i.e., the almost from fission fragments is unwanted energy and must be continuously evacuated by a heat removal auxiliary system using a suitable coolant. [1] Liquid metals, and particularly lithium, can provide the fast quenching rates required. One aspect to be considered is the large amount of energy which must be evacuated as residual heat (almost 95% of the total energy). This implies a large dedicated heat transfer surface. [7]

As regards to the mechanism for pulsing the core, the pulsed mode can be produced using a variety of configurations depending on the desired frequency of the pulsations. For instance, the use of standard control rods in a single or banked configuration with a motor driving mechanism or the use of standard pneumatically operated pulsing mechanisms are suitable for generating up to 10 pulses per minute. [8] For the production of pulses at rates up to 50 pulsations per second, the use of rotating wheels introducing alternately neutron poison and fuel or neutron poison and non-neutron poison can be considered. However, for pulsations ranking the thousands of pulses per second (kHz), optical choppers or modern wheels employing magnetic bearings allow to revolve at 10 kHz. [8] If even faster pulsations are desired it would be necessary to make use of a new type of pulsing mechanism that does not involve mechanical motion, for example, lasers (based on the 3He polarization) as early proposed by Bowman, [9] or proton and neutron beams. Frequencies on the order of 1 kHz to 10 kHz are likely choices.

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear fusion</span> Process naturally occurring in stars where atomic nucleons combine

Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main sequence stars and other high-magnitude stars, where large amounts of energy are released.

A pulsed plasma thruster (PPT), also known as a plasma jet engine, is a form of electric spacecraft propulsion. PPTs are generally considered the simplest form of electric spacecraft propulsion and were the first form of electric propulsion to be flown in space, having flown on two Soviet probes starting in 1964. PPTs are generally flown on spacecraft with a surplus of electricity from abundantly available solar energy.

<span class="mw-page-title-main">Nuclear thermal rocket</span> Rocket engine that uses a nuclear reactor to generate thrust

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction, often nuclear fission, replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

<span class="mw-page-title-main">Antimatter rocket</span> Rockets using antimatter as their power source

An antimatter rocket is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.

Specific impulse is a measure of how efficiently a reaction mass engine creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is exactly proportional to the effective exhaust gas velocity.

<span class="mw-page-title-main">Critical mass</span> Smallest amount of fissile material needed to sustain a nuclear reaction

In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties, density, shape, enrichment, purity, temperature, and surroundings. The concept is important in nuclear weapon design.

<span class="mw-page-title-main">Neutron moderator</span> Substance that slows down particles with no electric charge

In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.

The fission-fragment rocket is a rocket engine design that directly harnesses hot nuclear fission products for thrust, as opposed to using a separate fluid as working mass. The design can, in theory, produce very high specific impulse while still being well within the abilities of current technologies.

<span class="mw-page-title-main">Tsiolkovsky rocket equation</span> Mathematical equation describing the motion of a rocket

The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity can thereby move due to the conservation of momentum. It is credited to the Russian scientist Konstantin Tsiolkovsky who independently derived it and published it in 1903, although it had been independently derived and published by the British mathematician William Moore in 1810, and later published in a separate book in 1813. American Robert Goddard also developed it independently in 1912, and German Hermann Oberth derived it independently about 1920.

A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation:

<span class="mw-page-title-main">Neutron cross section</span> Measure of neutron interaction likelihood

In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of target nuclei. In conjunction with the neutron flux, it enables the calculation of the reaction rate, for example to derive the thermal power of a nuclear power plant. The standard unit for measuring the cross section is the barn, which is equal to 10−28 m2 or 10−24 cm2. The larger the neutron cross section, the more likely a neutron will react with the nucleus.

In atomic physics, Doppler broadening is the broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. The distribution of different velocities of a given set of emitting particles leads to a corresponding distribution of different Doppler shifts on light emitted by the particles, which results in emission lines that are broadened relative to the emission lines of a single stationary particle. This resulting line profile is known as a Doppler profile. A particular case is the thermal Doppler broadening due to the thermal motion of the particles. Then, the broadening depends only on the frequency of the spectral line, the mass of the emitting particles, and their temperature, and therefore can be used for inferring the temperature of an emitting body.

<span class="mw-page-title-main">Nuclear reactor physics</span> Field of physics dealing with nuclear reactors

Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.

A reaction engine is an engine or motor that produces thrust by expelling reaction mass, in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there is an equal, but opposite, reaction force."

<span class="mw-page-title-main">Oberth effect</span> Type of spacecraft maneuver

In astronautics, a powered flyby, or Oberth maneuver, is a maneuver in which a spacecraft falls into a gravitational well and then uses its engines to further accelerate as it is falling, thereby achieving additional speed. The resulting maneuver is a more efficient way to gain kinetic energy than applying the same impulse outside of a gravitational well. The gain in efficiency is explained by the Oberth effect, wherein the use of a reaction engine at higher speeds generates a greater change in mechanical energy than its use at lower speeds. In practical terms, this means that the most energy-efficient method for a spacecraft to burn its fuel is at the lowest possible orbital periapsis, when its orbital velocity is greatest. In some cases, it is even worth spending fuel on slowing the spacecraft into a gravity well to take advantage of the efficiencies of the Oberth effect. The maneuver and effect are named after the person who first described them in 1927, Hermann Oberth, an Austro-Hungarian-born German physicist and a founder of modern rocketry.

The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium.

The six-factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in a non-infinite medium.

Gas core reactor rockets are a conceptual type of rocket that is propelled by the exhausted coolant of a gaseous fission reactor. The nuclear fission reactor core may be either a gas or plasma. They may be capable of creating specific impulses of 3,000–5,000 s and thrust which is enough for relatively fast interplanetary travel. Heat transfer to the working fluid (propellant) is by thermal radiation, mostly in the ultraviolet, given off by the fission gas at a working temperature of around 25,000 °C.

A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket.

A photon rocket is a rocket that uses thrust from the momentum of emitted photons for its propulsion. Photon rockets have been discussed as a propulsion system that could make interstellar flight possible, which requires the ability to propel spacecraft to speeds at least 10% of the speed of light, v ≈ 0.1c = 30,000 km/s. Photon propulsion has been considered to be one of the best available interstellar propulsion concepts, because it is founded on established physics and technologies. Traditional photon rockets are proposed to be powered by onboard generators, as in the nuclear photonic rocket. The standard textbook case of such a rocket is the ideal case where all of the fuel is converted to photons which are radiated in the same direction. In more realistic treatments, one takes into account that the beam of photons is not perfectly collimated, that not all of the fuel is converted to photons, and so on. A large amount of fuel would be required and the rocket would be a huge vessel.

References

  1. 1 2 Arias, Francisco. J (2016). "On the Use of a Pulsed Nuclear Thermal Rocket for Interplanetary Travel". 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, UT, Propulsion and Energy, (AIAA 2016–4685). doi:10.2514/6.2016-4685. ISBN   978-1-62410-406-0.
  2. Waltar, Alan. E; Reynolds, Albert. B (1981). Fast Breeder Reactors. Pergamon Press. ISBN   0-08-025983-9.
  3. Popov, S.G; Carbajo, J. J.; et al. (1996). Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation. U.S. Department of Energy (DOE) ORNL/TM-2000/351.
  4. Sutton, G.P; Biblarz, O. (2010). Rocket Propulsion Elements. eight edition . John Wiley and Sons.Inc. ISBN   978-0470080245.
  5. Duderstadt, James J.; Hamilton, Louis J. (1976). Nuclear Reactor Analysis. Wiley. ISBN   0471223638.
  6. Glasstone, Samuel.; Sesonkse, Alexander (1994). Nuclear Reactor Engineering. Chapman and Hall. ISBN   0412985217.
  7. Arias, Francisco. J; Parks, G. T. (2017). "Heat Removal System for Shutdown in Nuclear Thermal Rockets and Advanced Concepts". Journal of Spacecraft and Rockets. 54 (4): 967–972. doi:10.2514/1.A33663. hdl: 2117/102046 .
  8. 1 2 William. L Whittemore (23–25 May 1995). "A continuously Pulsed Triga Reactor: An Intense Source for Neutron Scattering Experiments" (PDF). 4th meeting of the International Group on Research Reactors, Gatlinburg, TN, USA. Ref: XAD4168.
  9. Bowman, C. D (1998). "Prospects for Reactor Reactivity Control Using Lasers". Transactions of American Nuclear Society.