Apollo 6

Last updated

Apollo 6
Apollo 6 launch.jpg
Launch of Apollo 6 (identifiable by its white-painted service module) as seen from the top of the launch tower
Mission typeUncrewed Earth orbital CSM flight (A)
Operator NASA
COSPAR ID 1968-025A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 3170
Mission duration9 hours 57 minutes 20 seconds
Orbits completed3
Spacecraft properties
Spacecraft
Manufacturer North American Rockwell
Launch mass
  • Total: 36,930 kilograms (81,420 lb)
  • CSM: 25,140 kilograms (55,420 lb)
Start of mission
Launch dateApril 4, 1968, 12:00:01 (1968-04-04UTC12:00:01Z) UTC
Rocket Saturn V SA-502
Launch site Kennedy LC-39A
End of mission
Recovered by USS Okinawa
Landing dateApril 4, 1968, 21:57:21 (1968-04-04UTC21:57:22Z) UTC
Landing site 27°40′N157°55′W / 27.667°N 157.917°W / 27.667; -157.917 (Apollo 6 splashdown)
  Apollo 5
Apollo 7  

Apollo 6 (April 4, 1968), also known as AS-502, was the third and final uncrewed flight in the United States' Apollo Program and the second test of the Saturn V launch vehicle. It qualified the Saturn V for use on crewed missions, and it was used beginning with Apollo 8 in December 1968.

Contents

Apollo 6 was intended to demonstrate the ability of the Saturn V's third stage, the S-IVB, to propel itself and the Apollo spacecraft to lunar distances. Its components began arriving at the Kennedy Space Center in early 1967. Testing proceeded slowly, often delayed by testing of the Saturn V intended for Apollo 4—the inaugural launch of the Saturn V. After that uncrewed mission launched in November 1967, there were fewer delays, but enough so that the flight was postponed from March to April 1968.

The flight plan called for, following trans-lunar injection, a direct return abort using the service module's main engine with a flight time totaling about 10 hours but vibrations damaged some of the Rocketdyne J-2 engines in the second and third stages by rupturing internal fuel lines causing a second-stage engine to shut down early. An additional second-stage engine also shut down early due to cross-wiring with the engine that had shut down. The vehicle's onboard guidance system compensated by burning the second and third stages longer, although the resulting parking orbit was more elliptical than planned. The damaged third-stage engine failed to restart for trans-lunar injection. Flight controllers elected to repeat the flight profile of the previous Apollo 4 test, achieving a high orbit and high-speed return. Despite the engine failures, the flight provided NASA with enough confidence to use the Saturn V for crewed launches; a potential third uncrewed flight was cancelled.

Objectives

Apollo 6, the second test flight of the Saturn V launch vehicle, was intended to send a command and service module (CSM) plus a Lunar Test Article (LTA), a simulated lunar module (LM) with mounted structural vibration sensors, into a trans-lunar trajectory, with the boost from orbit to trans-lunar velocity powered by the Saturn V's third stage, the S-IVB. That trajectory, although passing beyond the orbit of the Moon, would not encounter it. The CSM was to separate from the S-IVB soon after the burn, and the SM engine would then fire to slow the craft, dropping its apogee to 22,204 kilometers (11,989 nmi) and causing the CSM to return to Earth, simulating a "direct-return" abort. On the return leg, the engine was to fire once more to accelerate the craft to simulate conditions that the Apollo spacecraft would encounter on its return from the Moon, with a re-entry angle of −6.5 degrees and velocity of 11,100 meters per second (36,500 ft/s). The entire mission was to last about 10 hours. [1] [2] [3]

The mission was intended to test the Saturn V launch vehicle's ability to send the entire Apollo spacecraft to the Moon—in particular, to test the stresses on the LM and the vibration modes of the entire Saturn V with near-full loads. [4] With the spacecraft having been qualified for crewed flight through the Apollo 4 mission (the first flight of the Saturn V), the focus was on fully qualifying the launch vehicle. Nominal completion of planned mission events through attainment of the initial parking orbit, and the restarting of the S-IVB to propel the space vehicle towards the planned distance, beyond the Moon's orbit, was deemed sufficient to fulfill Apollo 6's main objectives. [5]

Equipment

The Lunar Module Test Article (LTA-2R) being moved for mating with the spacecraft-LM adapter. 67-H-1230 Lunar module LTA-2 R.jpg
The Lunar Module Test Article (LTA-2R) being moved for mating with the spacecraft–LM adapter.

Apollo 6's launch vehicle was designated AS-502, the second flight-capable Saturn V. Its payload included CSM-020, a Block I CSM that had some Block II modifications. The Block I CSM did not have the capability of docking with a Lunar Module, as the Block II did. [6] Among the modifications to CSM-020 was a new crew hatch, intended to be tested under lunar return conditions. [7] This new hatch replaced the one which was condemned by the Apollo 1 investigation board as too difficult to open in case of emergency, circumstances that had contributed to the deaths of three astronauts in the Apollo 1 fire of January 27, 1967. [8] The command module used was CM-020; it carried a mission programmer and other equipment to allow it to be operated remotely. [9] [10]

The service module used was SM-014—the originally-planned SM for Apollo 6, SM-020, was used for Apollo 4 after its SM, SM-017, was damaged in an explosion and had to be scrapped. [10] CM-014 was unavailable for flight as it was being used to aid the Apollo 1 investigation. [11] Not all SM systems were activated for the short Apollo 6 mission: the radiators to remove excess heat from the electrical power system and the environmental control system were not connected. [12]

Kenneth S. Kleinknecht, Command and Service Module manager at the Manned Spaceflight Center in Houston, was pleased with CSM-020 when it arrived at Kennedy Space Center from North American Aviation, the manufacturer, though he was upset it arrived wrapped in flammable mylar. In contrast with Apollo 1's ill-fated CSM, which arrived with hundreds of unresolved issues, CSM-020 had only 23, mostly routine problems. [13]

Also flown on Apollo 6 was a lunar test article: a simulated lunar module, designated as LTA-2R. It included a flight-type descent stage without landing gear, its fuel tanks filled with a water–glycol mixture and freon in its oxidizer tanks. Containing no flight systems, its ascent stage was made of ballasted aluminum and instrumented to show vibration, acoustics and structural integrity. LTA-2R remained inside the Spacecraft-Lunar Module Adapter, numbered SLA-9, throughout the flight. [14] [15]

Preparation

The S-IC first stage arrived by barge on March 13, 1967, and was erected in the Vehicle Assembly Building (VAB) four days later; the S-IVB third stage and Instrument Unit computer both arrived on March 17. The S-II second stage was not yet ready and so the dumbbell-shaped spacer, used in preparation for Apollo 4 (which also had a delayed S-II), was substituted so testing could proceed. The spacer had the same height and mass as the S-II along with all the electrical connections. The S-II arrived May 24 and was stacked and mated into the rocket on July 7. [16]

Apollo 6 saw the first use of the High Bay 3 of the VAB, and it was quickly discovered that its air conditioning facilities were inadequate. Portable high-capacity units were brought in to keep equipment and workers cool. There were delays in April as personnel and equipment were busy with Apollo 4, and not available for tests on Apollo 6. The S-II second stage arrived on May 25 and was erected in one of the VAB's low bays, but work on Apollo 6 continued to be plagued by delays, many occasioned by work on Apollo 4. The vehicle was erected on Mobile Service Launcher 2, but work on the launcher's arms, which would swing back at launch, proceeded slowly. Also slow to arrive was the CSM itself; the planned late-September arrival was pushed back two months. [16]

After Apollo 4's launch on November 9, 1967, the pace of the Apollo 6 project picked up, but there remained many problems with flight hardware. The CSM was erected atop the launch vehicle on December 11, 1967, and the spacecraft stack was rolled out to Launch Complex 39A on February 6, 1968. [17] The rollout was an all-day affair and much of it was conducted in heavy rain. Because the crawler-transporter had to halt for two hours when communications failed, the vehicle did not arrive at the launch pad until it was dark. The mobile service structure could not be moved to the launch pad for two days due to high winds. [18] [16]

The flight readiness test concluded on March 8, 1968, and at a review held three days later, Apollo 6 was cleared for launch contingent on the successful completion of testing and some action items identified at the meeting. Launch was set for March 28, 1968, but was postponed to April 1 and then April 3 after problems with some guidance system equipment and with fueling. The countdown demonstration test began on March 24; although it was completed within a week, the launch had to be postponed one more time. On April 3, the final countdown began with liftoff scheduled for the following day. [16] All subsequent problems were fixed during the built-in holds in the countdown and did not delay the mission. [7]

Flight

Launch

This view of the Apollo 6 launch was taken from a chase plane. S68-27366.jpg
This view of the Apollo 6 launch was taken from a chase plane.

Apollo 6 launched from Launch Complex 39A at Kennedy Space Center on April 4, 1968, at 7:00 am (1200 UT). For the first two minutes, the Saturn V launch vehicle behaved normally. Then, as the Saturn V's S-IC first stage burned, pogo oscillations shook the vehicle. The thrust variations caused the Saturn V to experience a g-force of ±0.6 g (5.9 m/s2), though it had only been designed for a maximum of 0.25 g (2.5 m/s2). The vehicle suffered no damage, other than the loss of one of the panels of the Spacecraft-Lunar Module Adapter (SLA). [19]

NASA Associate Administrator for Manned Space Flight George Mueller explained the cause to a congressional hearing:

Pogo arises fundamentally because you have thrust fluctuations in the engines. Those are normal characteristics of engines. All engines have what you might call noise in their output because the combustion is not quite uniform, so you have this fluctuation in thrust of the first stage as a normal characteristic of all engine burning.

Now, in turn, the engine is fed through a pipe that takes the fuel out of the tanks and feeds it into the engine. That pipe's length is something like an organ pipe so it has a certain resonance frequency of its own and it really turns out that it will oscillate just like an organ pipe does.

The structure of the vehicle is much like a tuning fork, so if you strike it right, it will oscillate up and down longitudinally. In a gross sense it is the interaction between the various frequencies that causes the vehicle to oscillate. [20]

After the first stage was jettisoned, the S-II second stage began to experience problems with its J-2 engines. Engine number two had performance problems from 225 seconds after liftoff, abruptly worsening at T+319 seconds. At T+412 seconds the Instrument Unit shut it down altogether, and two seconds later, engine number three also shut down. [2] The fault was in engine two, but due to cross-connection of wires, the command from the Instrument Unit also shut down engine three, which had been running normally. [21] The Instrument Unit was able to compensate, and the remaining three engines burned for 58 seconds longer than planned. The S-IVB third stage also had to burn for 29 seconds longer than usual. The S-IVB also experienced a slight performance loss. [2]

Orbit

Due to the less-than-nominal launch, the CSM and S-IVB were inserted into a 173.14-kilometer (93.49 nmi) by 360.10-kilometer (194.44 nmi) parking orbit, instead of the planned 190-kilometer (100 nmi) circular parking orbit. [2] This deviation from the flight plan did not preclude continuing the mission. [22] During the first orbit, the S-IVB maneuvered, changing its attitude towards the horizon to qualify techniques that future astronauts could use in landmark tracking. Then, after the standard two orbits to assess the vehicle's readiness for trans-lunar injection (TLI), the S-IVB was ordered to restart, but failed to do so. [23]

Deciding on a pre-planned alternate mission, [24] the flight director, Clifford E. Charlesworth and his team in Mission Control chose to use the SM's Service Propulsion System (SPS) engine to raise the spacecraft into an orbit with a high apogee (point of furthest distance from Earth), with a low perigee that would result in re-entry, [3] as had been done in Apollo 4. This plan would complete some of the mission objectives. The SPS engine burned for 442 seconds to get to the planned 22,204-kilometer (11,989 nmi) apogee. There was now, however, not enough propellant to speed up the atmospheric reentry with a second SPS engine burn, and the spacecraft only entered the atmosphere at a speed of 10,000 meters per second (33,000 ft/s) instead of the planned 11,000 meters per second (37,000 ft/s) that would simulate a lunar return. [25] While at high altitudes, the CM was able to return data on the extent to which future astronauts would be protected from the Van Allen Belts by the skin of the spacecraft. [24]

Ten hours after launch, the CM landed 80 kilometers (43 nmi) from the planned touchdown point in the North Pacific Ocean north of Hawaii, and was lifted on board USS Okinawa. [25] The SM was jettisoned just before reaching the atmosphere and burned up. [26] The S-IVB's orbit gradually decayed and it reentered the atmosphere on April 26, 1968. [27]

Aftermath

In a post-launch press conference, Apollo Program Director Samuel C. Phillips said, "there's no question that it's less than a perfect mission", but that the launch vehicle's reaching orbit despite the loss of two engines was "a major unplanned accomplishment". [20] Mueller called Apollo 6 "a good job all around, an excellent launch, and, in balance, a successful mission ... and we have learned a great deal", but later stated that Apollo 6 "will have to be defined as a failure". [20]

The phenomenon of pogo, experienced during the first stage of the flight, was well known. However, NASA thought that the Saturn V had been "detuned"—that is, prevented from vibrating at its natural frequencies. Soon after the Apollo 6 flight, NASA and its contractors sought to eliminate the problems for future flights, and about 1,000 government and industry engineers worked on the problem. To damp pressure oscillations in the F-1 and J-2 engines, cavities in valves leading to them were filled with helium gas shortly before takeoff as a shock absorber. [20]

Apollo 6 command module on display at the Fernbank Science Center in Atlanta, Georgia Fernbank-07.jpg
Apollo 6 command module on display at the Fernbank Science Center in Atlanta, Georgia

The problems with the S-II and the S-IVB were traced to the J-2 engines, present in both stages. Tests showed that the propellant lines leading to the spark igniters could fail in low atmospheric pressure or in vacuum. The propellant lines had metal bellows to allow for thermal expansion. In ground testing the cold propellants passing through the propellant lines would form a layer of frost on the LOX line and liquid air on the LH2 line, damping out any vibrations. In the vacuum of space, there was no such protection: the bellows vibrated rapidly and failed at peak flow, causing a burn-through of the propellant lines. The bellows were replaced with rigid bends and the lines strengthened. [28] In Apollo 6's wake, NASA engineers debated whether to configure the spacecraft's emergency detection system to automatically abort in the event of excessive pogo; this plan was opposed by Director of Flight Crew Operations Deke Slayton. Instead, work began on having a "pogo abort sensor" to allow the flight crew to judge whether to abort, but by August 1968, it had become clear that pogo could be dealt with without such a sensor, and work on it was abandoned. [6] [28]

The SLA problem was caused by its honeycomb structure. As the rocket accelerated through the atmosphere, the cells expanded due to trapped air and water, causing the adapter surface to break free. In response, engineers drilled small holes in the surface to allow trapped gases to dissipate, and placed a thin layer of cork on the adapter to help absorb moisture. [29]

NASA's efforts were enough to satisfy the Senate Committee on Aeronautical and Space Sciences. In late April, the committee reported that the agency had quickly analyzed and diagnosed the abnormalities of Apollo 6, and had taken corrective action. [20] After detailed analysis of the Saturn V's performance, and of the fixes for future launch vehicles, engineers at the Marshall Space Flight Center in Alabama concluded that a third uncrewed test flight of the Saturn V was unnecessary. Therefore, the next Saturn V to fly, on Apollo 8, would carry a crew (Apollo 7, the first crewed Apollo mission to fly, would be launched by a Saturn IB). [3] [30]

After the mission, CM-020 was transferred to the Smithsonian Institution. [10] The Apollo 6 command module is on display at the Fernbank Science Center in Atlanta, Georgia. [31]

Cameras

Still from footage of Apollo 6's interstage falling away (NASA) Apollo6Interstage.jpg
Still from footage of Apollo 6's interstage falling away (NASA)

The Saturn V had several cameras affixed to it, intended to be ejected and later recovered. Three of the four cameras on board the S-IC failed to eject and thus were destroyed, and only one of the two cameras on the S-II was recovered. [32] Two of these cameras were intended to film the S-IC/S-II separation and the other two were to film the liquid oxygen tank; the one that was recovered had filmed separation. The failure to eject was attributed to a lack of nitrogen pressure in the bottles that were to cause the ejection. [21] The command module carried a motion picture camera, intended to be activated during launch and during re-entry. Because the mission took about ten minutes longer than planned, re-entry events were not filmed. [33]

A 70 mm still camera operated in the CM during part of the mission, pointed at the Earth through the hatch window. [33] Coverage included parts of the United States, the Atlantic Ocean, Africa, and the western Pacific Ocean. The camera had haze-penetrating film and filter combination, with better color balance and higher resolution than photographs taken on previous American crewed missions. [3] These proved excellent for cartographic, topographic, and geographic studies. [25]

Public impact

There was little press coverage of the Apollo 6 mission mainly because on the same day as the launch, Martin Luther King Jr. was assassinated in Memphis, and President Lyndon B. Johnson had announced he would not seek reelection only four days earlier. [3] [34]

See also

Related Research Articles

<span class="mw-page-title-main">Apollo 8</span> First crewed space mission to orbit the Moon

Apollo 8 was the first crewed spacecraft to leave Earth's gravitational sphere of influence, and the first human spaceflight to reach the Moon. The crew orbited the Moon ten times without landing and then returned to Earth. These three astronauts—Frank Borman, James Lovell, and William Anders—were the first humans to see and photograph the far side of the Moon and an Earthrise.

<span class="mw-page-title-main">Apollo program</span> 1961–1972 American crewed lunar exploration program

The Apollo program, also known as Project Apollo, was the United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which succeeded in preparing and landing the first men on the Moon from 1968 to 1972. It was first conceived in 1960 during President Dwight D. Eisenhower's administration as a three-person spacecraft to follow the one-person Project Mercury, which put the first Americans in space. Apollo was later dedicated to President John F. Kennedy's national goal for the 1960s of "landing a man on the Moon and returning him safely to the Earth" in an address to Congress on May 25, 1961. It was the third US human spaceflight program to fly, preceded by the two-person Project Gemini conceived in 1961 to extend spaceflight capability in support of Apollo.

<span class="mw-page-title-main">Apollo 13</span> Failed Moon landing mission in the Apollo program

Apollo 13 was the seventh crewed mission in the Apollo space program and the third meant to land on the Moon. The craft was launched from Kennedy Space Center on April 11, 1970, but the lunar landing was aborted after an oxygen tank in the service module (SM) ruptured two days into the mission, disabling its electrical and life-support system. The crew, supported by backup systems on the lunar module (LM), instead looped around the Moon in a circumlunar trajectory and returned safely to Earth on April 17. The mission was commanded by Jim Lovell, with Jack Swigert as command module (CM) pilot and Fred Haise as lunar module (LM) pilot. Swigert was a late replacement for Ken Mattingly, who was grounded after exposure to rubella.

<span class="mw-page-title-main">Apollo 7</span> First crewed flight of the Apollo space program

Apollo 7 was the first crewed flight in NASA's Apollo program, and saw the resumption of human spaceflight by the agency after the fire that had killed the three Apollo 1 astronauts during a launch rehearsal test on January 27, 1967. The Apollo 7 crew was commanded by Walter M. Schirra, with command module pilot Donn F. Eisele and Lunar Module pilot R. Walter Cunningham.

<span class="mw-page-title-main">Apollo 9</span> 3rd crewed mission of the Apollo space program

Apollo 9 was the third human spaceflight in NASA's Apollo program. Flown in low Earth orbit, it was the second crewed Apollo mission that the United States launched via a Saturn V rocket, and was the first flight of the full Apollo spacecraft: the command and service module (CSM) with the Lunar Module (LM). The mission was flown to qualify the LM for lunar orbit operations in preparation for the first Moon landing by demonstrating its descent and ascent propulsion systems, showing that its crew could fly it independently, then rendezvous and dock with the CSM again, as would be required for the first crewed lunar landing. Other objectives of the flight included firing the LM descent engine to propel the spacecraft stack as a backup mode, and use of the portable life support system backpack outside the LM cabin.

<span class="mw-page-title-main">Apollo 10</span> Second crewed mission to orbit the Moon

Apollo 10 was the fourth human spaceflight in the United States' Apollo program and the second to orbit the Moon. NASA, the mission's operator, described it as a "dress rehearsal" for the first Moon landing. It was designated an "F" mission, intended to test all spacecraft components and procedures short of actual descent and landing.

<span class="mw-page-title-main">Apollo 12</span> Second crewed Moon landing

Apollo 12 was the sixth crewed flight in the United States Apollo program and the second to land on the Moon. It was launched on November 14, 1969, by NASA from the Kennedy Space Center, Florida. Commander Charles "Pete" Conrad and Lunar Module Pilot Alan L. Bean performed just over one day and seven hours of lunar surface activity while Command Module Pilot Richard F. Gordon remained in lunar orbit.

<span class="mw-page-title-main">Apollo 16</span> Fifth crewed Moon landing

Apollo 16 was the tenth crewed mission in the United States Apollo space program, administered by NASA, and the fifth and penultimate to land on the Moon. It was the second of Apollo's "J missions", with an extended stay on the lunar surface, a focus on science, and the use of the Lunar Roving Vehicle (LRV). The landing and exploration were in the Descartes Highlands, a site chosen because some scientists expected it to be an area formed by volcanic action, though this proved not to be the case.

<span class="mw-page-title-main">Apollo 17</span> Sixth and most recent crewed Moon landing

Apollo 17 was the eleventh and final mission of NASA's Apollo program, the sixth and most recent time humans have set foot on the Moon or traveled beyond low Earth orbit. Commander Gene Cernan and Lunar Module Pilot Harrison Schmitt walked on the Moon, while Command Module Pilot Ronald Evans orbited above. Schmitt was the only professional geologist to land on the Moon; he was selected in place of Joe Engle, as NASA had been under pressure to send a scientist to the Moon. The mission's heavy emphasis on science meant the inclusion of a number of new experiments, including a biological experiment containing five mice that was carried in the command module.

<span class="mw-page-title-main">Apollo 4</span> First test flight of the Apollo Saturn V rocket

Apollo 4, also known as SA-501, was the uncrewed first test flight of the Saturn V launch vehicle, the rocket that eventually took astronauts to the Moon. The space vehicle was assembled in the Vehicle Assembly Building, and was the first to be launched from Kennedy Space Center (KSC) in Florida, ascending from Launch Complex 39, where facilities built specially for the Saturn V had been constructed.

<span class="mw-page-title-main">Apollo 5</span> Uncrewed first test flight of the Apollo Lunar Module

Apollo 5, also known as AS-204, was the uncrewed first flight of the Apollo Lunar Module (LM) that would later carry astronauts to the surface of the Moon. The Saturn IB rocket bearing the LM lifted off from Cape Kennedy on January 22, 1968. The mission was successful, though due to programming problems an alternate mission to that originally planned was executed.

<span class="mw-page-title-main">AS-201</span> 1966 uncrewed, suborbital test flight within the Apollo program

AS-201, flown February 26, 1966, was the first uncrewed test flight of an entire production Block I Apollo command and service module and the Saturn IB launch vehicle. The spacecraft consisted of the second Block I command module and the first Block I service module. The suborbital flight was a partially successful demonstration of the service propulsion system and the reaction control systems of both modules, and successfully demonstrated the capability of the command module's heat shield to survive re-entry from low Earth orbit.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB(also known as the uprated Saturn I) was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

Apollo abort modes were procedures by which the nominal launch of an Apollo spacecraft, either the Saturn IB or Saturn V rocket, could be terminated. The abort of the flight allowed for the rescue of the crew if the rocket failed catastrophically. Depending on how far the flight had progressed, different procedure or modes would be used. In the history of the Apollo Program, none of the abort modes were ever used on any of the fifteen crewed Apollo spacecraft flights.

The Apollo Applications Program (AAP) was created as early as 1966 by NASA headquarters to develop science-based human spaceflight missions using hardware developed for the Apollo program. AAP was the ultimate development of a number of official and unofficial Apollo follow-on projects studied at various NASA labs. However, the AAP's ambitious initial plans became an early casualty when the Johnson Administration declined to support it adequately, partly in order to implement its Great Society set of domestic programs while remaining within a $100 billion budget. Thus, Fiscal Year 1967 ultimately allocated $80 million to the AAP, compared to NASA's preliminary estimates of $450 million necessary to fund a full-scale AAP program for that year, with over $1 billion being required for FY 1968. The AAP eventually led to Skylab, which absorbed much of what had been developed under Apollo Applications.

Several planned missions of the Apollo crewed Moon landing program of the 1960s and 1970s were canceled, for reasons which included changes in technical direction, the Apollo 1 fire, hardware delays, and budget limitations. After the landing by Apollo 12, Apollo 20, which would have been the final crewed mission to the Moon, was canceled to allow Skylab to launch as a "dry workshop". The next two missions, Apollos 18 and 19, were later canceled after the Apollo 13 incident and further budget cuts. Two Skylab missions also ended up being canceled. Two complete Saturn V rockets remained unused and were put on display in the United States.

<span class="mw-page-title-main">Manned Venus flyby</span> Proposed crewed Venus flyby

Manned Venus Flyby was a 1967–1968 NASA proposal to send three astronauts on a flyby mission to Venus in an Apollo-derived spacecraft in 1973–1974, using a gravity assist to shorten the return journey to Earth.

<span class="mw-page-title-main">Transposition, docking, and extraction</span> Maneuver done by the Apollo spacecraft

Transposition, docking, and extraction was a maneuver performed during Apollo lunar landing missions from 1969 to 1972, to withdraw the Apollo Lunar Module (LM) from its adapter housing which secured it to the Saturn V launch vehicle upper stage and protected it from the aerodynamic stresses of launch. The maneuver involved the command module pilot separating the Apollo Command and Service Module (CSM) from the adapter, turning the CSM around, and docking its nose to the Lunar Module, then pulling the combined spacecraft away from the upper stage. It was performed shortly after the trans-lunar injection maneuver that placed the Apollo spacecraft on a three-day trajectory to the Moon. The docking created a continuous, pressurized tunnel which permitted the astronauts to transfer internally between the CSM and the LM.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

The Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered by liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

References

  1. Press Kit, p. 3.
  2. 1 2 3 4 Saturn V Launch Vehicle Flight Evaluation Report - AS-502 Apollo 6 Mission (PDF). NASA. June 25, 1968. MPR-SAT-FE-68-3. Retrieved July 7, 2013.
  3. 1 2 3 4 5 "The Legacy of Apollo 6". NASA. April 4, 2021. Retrieved September 19, 2021.
  4. Orloff & Harland 2006, pp. 204–206.
  5. Press Kit, p. 1.
  6. 1 2 Orloff & Harland 2006, p. 172.
  7. 1 2 Orloff & Harland 2006, p. 151.
  8. Orloff & Harland 2006, pp. 112–115.
  9. Press Kit, p. 15.
  10. 1 2 3 "Apollo/Skylab ASTP and Shuttle Orbiter Major End Items" (PDF). NASA. March 1978. p. 15.
  11. Ertel, Ivan D.; Newkirk, Roland W.; et al. (1969–1978). "Part 1 (H): Preparation for Flight, the Accident, and Investigation: March 25 – April 24, 1967". The Apollo Spacecraft: A Chronology. Vol. IV. Washington, D.C.: NASA. LCCN   69060008. OCLC   23818. NASA SP-4009. Archived from the original on February 5, 2008. Retrieved September 25, 2021.
  12. Press Kit, p. 16.
  13. Brooks 1979, pp. 247–248.
  14. Press Kit, p. 19.
  15. "Apollo/Skylab ASTP and Shuttle Orbiter Major End Items" (PDF). NASA. March 1978. p. 10.
  16. 1 2 3 4 Benson, Charles D.; Faherty, William Barnaby (1978). "Apollo 6 - A "Less Than Perfect" Mission". Moonport: A History of Apollo Launch Facilities and Operations. NASA. NASA SP-4204. Archived from the original on January 23, 2008. Retrieved November 3, 2022. Ch. 20-2.
  17. Orloff & Harland 2006, p. 152.
  18. Brooks 1979, p. 247.
  19. Brooks 1979, p. 248.
  20. 1 2 3 4 5 Benson, Charles D.; Faherty, William Barnaby (1978). "Two engines out but still running". Moonport: A History of Apollo Launch Facilities and Operations. NASA. NASA SP-4204. Archived from the original on January 23, 2008. Retrieved September 27, 2021. Ch. 20-3.
  21. 1 2 Orloff & Harland 2006, p. 153.
  22. Orloff & Harland 2006, p. 154.
  23. Orloff & Harland 2006, pp. 354–356.
  24. 1 2 Orloff & Harland 2006, p. 356.
  25. 1 2 3 Brooks 1979, p. 249.
  26. Orloff & Harland 2006, p. 157.
  27. Orloff & Harland 2006, p. 156.
  28. 1 2 Brooks 1979, pp. 251–252.
  29. Orloff & Harland 2006, p. 158.
  30. Orloff & Harland 2006, p. 572.
  31. Williams, David R. "Apollo: Where are they now?". National Space Science Data Center . NASA. Retrieved July 7, 2013.
  32. Mission Report, p. 4-1.
  33. 1 2 Mission Report, pp. 5-15–5-19.
  34. Brooks 1979, pp. 250–252.

Sources