A-004

Last updated

A-004
Little Joe II A-004.jpg
Little Joe II A-004, White Sands, New Mexico
Mission typeAbort test
Operator NASA
Mission duration6 minutes, 50 seconds
Distance travelled34.63 kilometers (21.52 mi)
Apogee23.83 kilometers (14.81 mi)
Spacecraft properties
Spacecraft Apollo CM-002
Start of mission
Launch dateJanuary 20, 1966, 15:17:01 (1966-01-20UTC15:17:01Z) UTC
Rocket Little Joe II
Launch site White Sands LC-36
End of mission
Landing dateJanuary 20, 1966, 15:23:51 (1966-01-20UTC15:23:52Z) UTC
Apollo program.svg
Project Apollo
Abort Tests
 

A-004 was the sixth and final test of the Apollo launch escape vehicle and the first flight of a Block I production-type Apollo Command/Service Module.

Contents

Objectives

Mission A-004 was uncrewed and was conducted to demonstrate that

  1. The launch escape vehicle would satisfactorily orient and stabilize itself in the proper attitude after being subjected to a high rate of tumbling during the powered phase of an abort
  2. The escape vehicle would maintain its structural integrity under test conditions in which the command module structure was loaded to the design limit.

The launch vehicle was the fifth and final Little Joe II flown. The propulsion system consisted of four Algol and five Recruit rocket motors. The attitude control system was similar to the one used on mission A-003 except that the reaction control system was deleted and the vehicle was provided with the capability of responding to a radio-transmitted pitch up command. The pitch up maneuver was required to help initiate tumbling of the launch vehicle. The spacecraft for this mission consisted of a modified Block I command and service module (Block I production model 002), and a modified Block I launch escape system (airframe 002). The center of gravity and thrust vector were changed to assure that power-on tumbling would be attained after abort initiation. The Earth landing system was essentially the same as that used during Pad Abort Test 2.

Flight

The vehicle was launched on January 20, 1966, at 8:17:01 a.m. MST (15:17:01 UTC) after several postponements due to technical difficulties and adverse weather conditions. The pitch up maneuver was commanded from the ground when telemetry showed that the desired altitude and velocity conditions had been reached. The planned abort was automatically initiated 2.9 seconds later. The launch escape vehicle tumbled immediately after abort initiation. Pitch and yaw rates reached peak values of 160 degrees per second, and roll rates reached a peak of minus 70 degrees per second. The launch escape system canard surfaces deployed at the proper time and stabilized the command module with the aft heat shield forward after the escape vehicle had tumbled about four times. Tower jettison and operation of the Earth landing systems were normal, and the command module landed about 113,620 feet (34.6 km) from the launch pad after having reached a maximum altitude of 78,180 feet (23.8 km) above mean sea level.

All systems performed satisfactorily, and the dynamic loads and structural response values were within the design limits and predicted values. Although a structural loading value of primary interest was not achieved (local differential pressure between the interior and exterior of the command module wall), all test objectives were satisfied.

Boilerplate location

The boilerplate spacecraft is currently on display at the Cradle of Aviation Museum, Garden City, New York. [1]

Related Research Articles

<span class="mw-page-title-main">Apollo 10</span> 4th crewed mission of the Apollo space program

Apollo 10 was the fourth human spaceflight in the United States' Apollo program and the second to orbit the Moon. NASA, the mission's operator, described it as a "dress rehearsal" for the first Moon landing. It was designated an "F" mission, intended to test all spacecraft components and procedures short of actual descent and landing.

<span class="mw-page-title-main">Apollo 4</span> First test flight of the Apollo Saturn V rocket

Apollo 4, also known as SA-501, was the uncrewed first test flight of the Saturn V launch vehicle, the rocket that eventually took astronauts to the Moon. The space vehicle was assembled in the Vehicle Assembly Building, and was the first to be launched from Kennedy Space Center (KSC) in Florida, ascending from Launch Complex 39, where facilities built specially for the Saturn V had been constructed.

<span class="mw-page-title-main">Apollo 5</span> First uncrewed test flight of the Apollo Lunar Module

Apollo 5, also known as AS-204, was the uncrewed first flight of the Apollo Lunar Module (LM) that would later carry astronauts to the surface of the Moon. The Saturn IB rocket bearing the LM lifted off from Cape Kennedy on January 22, 1968. The mission was successful, though due to programming problems an alternate mission to that originally planned was executed.

<span class="mw-page-title-main">Apollo 6</span> Second test flight of the Apollo Saturn V rocket

Apollo 6, also known as AS-502, was the third and final uncrewed flight in the United States' Apollo Program and the second test of the Saturn V launch vehicle. It qualified the Saturn V to be used on crewed missions, as happened for the first time on Apollo 8 in December 1968.

<span class="mw-page-title-main">AS-201</span> 1966 uncrewed, suborbital test flight within the Apollo program

AS-201, flown February 26, 1966, was the first uncrewed test flight of an entire production Block I Apollo command and service module and the Saturn IB launch vehicle. The spacecraft consisted of the second Block I command module and the first Block I service module. The suborbital flight was a partially successful demonstration of the service propulsion system and the reaction control systems of both modules, and successfully demonstrated the capability of the command module's heat shield to survive re-entry from low Earth orbit.

<span class="mw-page-title-main">Pad Abort Test 1</span>

Pad Abort Test 1 was the first abort test of the Apollo spacecraft on November 7, 1963.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">AS-103</span> Third orbital flight test of a boilerplate Apollo spacecraft, February 16, 1965

AS-103 was the third orbital flight test of a boilerplate Apollo spacecraft, and the first flight of a Pegasus micrometeroid detection satellite. Also known as SA-9, it was the third operational launch of a two-stage Saturn I launch vehicle.

<span class="mw-page-title-main">Pad Abort Test 2</span>

Pad Abort Test 2 was the follow-on second abort test to Pad Abort Test 1 of the Apollo spacecraft.

<span class="mw-page-title-main">A-001</span> 1964 abort test of the Apollo spacecraft

A-001 was the second abort test of the Apollo spacecraft.

<span class="mw-page-title-main">A-002</span> Third abort test of the Apollo spacecraft

A-002 was the third abort test of the Apollo spacecraft.

<span class="mw-page-title-main">A-003</span> 1965 abort test of the Apollo spacecraft

A-003 was the fourth abort test of the Apollo spacecraft. This particular flight is notable because during the abort test flight, an actual abort situation occurred, and further proved the Apollo launch escape system (LES). The CM was successfully pulled away from the malfunctioning Little Joe booster and it landed safely under parachutes.

<span class="mw-page-title-main">Little Joe II Qualification Test Vehicle</span> First test flight of the Apollo Little Joe II rocket in August 1963

QTV was the first test flight of the Apollo Little Joe II rocket. It was launched in August 1963.

<span class="mw-page-title-main">Little Joe II</span> American rocket

Little Joe II was an American rocket used from 1963 to 1966 for five uncrewed tests of the Apollo spacecraft launch escape system (LES), and to verify the performance of the command module parachute recovery system in abort mode. It was named after a similar rocket designed for the same function in Project Mercury. Launched from White Sands Missile Range in New Mexico, it was the smallest of four launch rockets used in the Apollo program.

Apollo abort modes were procedures by which the nominal launch of an Apollo spacecraft, either the Saturn IB or Saturn V rocket, could be terminated. The abort of the flight allowed for the rescue of the crew if the rocket failed catastrophically. Depending on how far the flight had progressed, different procedure or modes would be used. In the history of the Apollo Program, none of the abort modes were ever used on any of the fifteen crewed Apollo spacecraft flights.

<span class="mw-page-title-main">Launch escape system</span> A system to get the crew to safety if a rocket launch fails

A launch escape system (LES) or launch abort system (LAS) is a crew-safety system connected to a space capsule. It is used in the event of a critical emergency to quickly separate the capsule from its launch vehicle in case of an emergency requiring the abort of the launch, such as an impending explosion. The LES is typically controlled by a combination of automatic rocket failure detection, and a manual activation for the crew commander's use. The LES may be used while the launch vehicle is still on the launch pad, or during its ascent. Such systems are usually of three types:

<span class="mw-page-title-main">Boilerplate (spaceflight)</span> Nonfunctional spacecraft or payload

A boilerplate spacecraft, also known as a mass simulator, is a nonfunctional craft or payload that is used to test various configurations and basic size, load, and handling characteristics of rocket launch vehicles. It is far less expensive to build multiple, full-scale, non-functional boilerplate spacecraft than it is to develop the full system. In this way, boilerplate spacecraft allow components and aspects of cutting-edge aerospace projects to be tested while detailed contracts for the final project are being negotiated. These tests may be used to develop procedures for mating a spacecraft to its launch vehicle, emergency access and egress, maintenance support activities, and various transportation processes.

<span class="mw-page-title-main">Orion (spacecraft)</span> American–European spacecraft class for the Artemis program

Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of six beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces modeled after those used in the Boeing 787 Dreamliner. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Although compatible with other launch vehicles, Orion is primarily intended to launch atop a Space Launch System (SLS) rocket, with a tower launch escape system.

References

  1. "Rockwell Command Module 002 at the Cradle of Aviation Museum". Archived from the original on January 6, 2014. Retrieved August 10, 2013.

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .