Names | Daichi 3 |
---|---|
Mission type | Remote sensing |
Operator | JAXA |
Website | www |
Mission duration | 13 minutes and 55 seconds |
Spacecraft properties | |
Manufacturer | Mitsubishi Electric |
Start of mission | |
Launch date | 7 March 2023 1:38:15 UTC [1] |
Rocket | H3-22S |
Launch site | Tanegashima LP2 |
Contractor | Mitsubishi Heavy Industries |
End of mission | |
Disposal | Destroyed via FTS |
Last contact | March 7 2023 1:55 approximately |
Decay date | March 7 2023 |
Orbital parameters | |
Reference system | Geocentric |
Regime | Sun-synchronous |
Instruments | |
OPS: OPtical Sensor IRS: InfraRed Sensor [2] | |
Advanced Land Observing Satellite 3 (ALOS-3), also called Daichi 3, was a 3-ton Japanese satellite launched on March 7 2023 which failed to reach orbit. It was to succeed the optical sensor PRISM (Panchromatic Remote-sensing Instruments for Stereo Mapping) carried on the ALOS satellite, which operated from 2006 to 2011. The ALOS-2 satellite and the ALOS-4 satellite carry synthetic-aperture radar.
The satellite was launched as the payload on the first launch of the H3 rocket in March 2023. A failure of the second stage engine to ignite led to the rocket along with its payload ALOS-3 being destroyed by use of Flight Termination System (FTS) to prevent risk of falling debris.
ALOS-3 had a mass of 3 tonnes, and 7 reaction wheels. [3]
This section needs expansion. You can help by adding to it. (March 2023) |
ALOS-3 launched from Tanegashima, Japan by a H3 rocket on 7 March 2023. [1] Initially the launch was scheduled for 17 February but was aborted seconds before liftoff. [4]
MET | Time | Date(UTC) | Event | |
---|---|---|---|---|
JST | UTC | |||
X-22:00:00 | 12:37:55 | 03:37:55 | 6 March2023 | 1st Go/No-Go Decision |
X-18:00:00 | 16:37:55 | 07:37:55 | Airframe movement (VAB > LP2) | |
X-12:00:00 | 22:37:55 | 14:37:55 | 2nd Go/No-Go Decision | |
X-00:57:00 | 09:40:55 | 00:40:55 | 7 March2023 | 3rd Go/No-Go Decision |
X-00:10:00 | 10:27:55 | 01:27:55 | Final Go/No-Go Decision | |
X-00:08:00 | 10:29:55 | 01:29:55 | Start of Countdown | |
X-00:07:00 | 10:30:55 | 01:30:55 | Safety System ready | |
X-00:07:00 | 10:30:55 | 01:30:55 | Completion of Firing System Preparation | |
X-00:05:00 | 10:32:55 | 01:32:55 | Satellite System ready | |
X-00:04:00 | 10:33:55 | 01:33:55 | Automatic Countdown Sequence Start | |
X-00:04:00 | 10:33:55 | 01:33:55 | Start of Pressurization of each tank | |
X-00:02:50 | 10:35:05 | 01:35:05 | Power Switching (External to Internal) | |
X-00:00:55 | 10:37:00 | 01:37:00 | Completion of each tank Pressurization | |
X-00:00:53 | 10:37:02 | 01:37:02 | Frame deflector operation | |
X-00:00:35 | 10:37:20 | 01:37:20 | Water Curtain operation | |
X-00:00:18 | 10:37:37 | 01:37:37 | Flight mode on | |
X-00:00:15 | 10:37:40 | 01:37:40 | Single-Stage Thermal battery activation | |
X-00:00:15 | 10:37:40 | 01:37:40 | All System are ready | |
X-00:00:12. | 10:37:43. | 01:37:43 | Pyrotechnic Torch Ignition | |
X-00:00:06 | 10:37:49 | 01:37:49 | LE-9 Engine Start | |
X+00:00:00 | 10:37:55 | 01:37:55 | SRB-3 Engine Start & Liftoff | |
X+00:01:06 | 10:39:01 | 01:39:01 | Max Q | |
X+00:01:56 | 10:39:51 | 01:39:51 | SRB-3 Jettision | |
X+00:03:32 | 10:41:27 | 01:41:27 | Satellite Fairing Separation | |
X+00:04:56 | 10:42:51 | 01:42:51 | Main Engine Cutoff (MECO) | |
X+00:05:04 | 10:42:59 | 01:42:59 | 1st and 2nd Stage Separation | |
X+00:13:55 | 10:51:50 | 01:51:50 | Flight Interruption |
If it had been successfully launched, ALOS-3 would have been an Earth observation satellite and was to be used to monitor natural disasters as well as for cartography. [3] ALOS-3 carried OPS (OPtical Sensor), a multi-band optical camera which is an upgrade from the PRISM sensor. [2] OPS was capable of observing a 70-kilometer (43 mi) wide strip of land on Earth. [5] In addition to the RGB and infrared band covered by the predecessor ALOS satellite, ALOS-3 has two additional bandwidths: coastal and red edge. Coastal allows observation underwater up to a depth of 30m, while red edge was to be used to monitor vegetation growth. [5]
An expendable launch system is a launch vehicle that can be launched only once, after which its components are either destroyed during reentry or discarded in space. ELVs typically consist of several rocket stages that are discarded sequentially as their fuel is exhausted and the vehicle gains altitude and speed. As of 2024, fewer and fewer satellites and human spacecraft are launched on ELVs in favor of reusable launch vehicles. However, there are many instances where a ELV may still have a compelling use case over a reusable vehicle. ELVs are simpler in design than reusable launch systems and therefore may have a lower production cost. Furthermore, an ELV can use its entire fuel supply to accelerate its payload, offering greater payloads. ELVs are proven technology in widespread use for many decades.
The Japan Aerospace Exploration Agency (JAXA) is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orbit, and is involved in many more advanced missions such as asteroid exploration and possible human exploration of the Moon. Its motto is One JAXA and its corporate slogan is Explore to Realize.
Advanced Land Observing Satellite (ALOS), also called Daichi, was a 3810 kg Japanese satellite launched in 2006. After five years of service, the satellite lost power and ceased communication with Earth, but remains in orbit.
This article outlines notable events occurring in 2006 in spaceflight, including major launches and EVAs. 2006 saw Brazil, Iran, and Sweden all get a national into space for the first time.
Information Gathering Satellite are the satellites of the Japanese spy satellite program. It was started as a response to the 1998 North Korean missile test over Japan. The satellite program's main mission is to provide early warning of impending hostile launches in the region. This program is under the direct control of the cabinet. All Information Gathering Satellites have been launched by H-IIA rockets from the Tanegashima Space Center.
GCOM, is a JAXA project of long-term observation of Earth environmental changes. As a part of Japan's contributions to GEOSS, GCOM will be continued for 10 to 15 years with observation and utilization of global geophysical data such as precipitation, snow, water vapor, aerosol, for climate change prediction, water management, and food security. On May 18, 2012, the first satellite "GCOM-W" was launched. On December 23, 2017, the second satellite "GCOM-C1" was launched.
Several significant events in spaceflight occurred in 2009, including Iran conducting its first indigenous orbital launch, the first Swiss satellite being launched and New Zealand launching its first sounding rocket. The H-IIB and Naro-1 rockets conducted maiden flights, whilst the Tsyklon-3, Falcon 1 and Ariane 5GS were retired from service. The permanent crew of the International Space Station increased from three to six in May, and in the last few months of the year, Japan's first resupply mission to the outpost, HTV-1, was conducted successfully.
Greenhouse Gases Observing Satellite (GOSAT), also known as Ibuki, is an Earth observation satellite and the world's first satellite dedicated to greenhouse gas monitoring. It measures the densities of carbon dioxide and methane from 56,000 locations on the Earth's atmosphere. The GOSAT was developed by the Japan Aerospace Exploration Agency (JAXA) and launched on 23 January 2009, from the Tanegashima Space Center. Japan's Ministry of the Environment, and the National Institute for Environmental Studies (NIES) use the data to track gases causing the greenhouse effect, and share the data with NASA and other international scientific organizations.
Hitomi, also known as ASTRO-H and New X-ray Telescope (NeXT), was an X-ray astronomy satellite commissioned by the Japan Aerospace Exploration Agency (JAXA) for studying extremely energetic processes in the Universe. The space observatory was designed to extend the research conducted by the Advanced Satellite for Cosmology and Astrophysics (ASCA) by investigating the hard X-ray band above 10 keV. The satellite was originally called New X-ray Telescope; at the time of launch it was called ASTRO-H. After it was placed in orbit and its solar panels deployed, it was renamed Hitomi. The spacecraft was launched on 17 February 2016 and contact was lost on 26 March 2016, due to multiple incidents with the attitude control system leading to an uncontrolled spin rate and breakup of structurally weak elements.
Hayato, known before launch as KSAT, or the Kagoshima Satellite, is a Japanese satellite which was launched on 20 May 2010. It is a student-built spacecraft, which is operated by Kagoshima University, and is being used for technology demonstration and atmospheric research. The satellite is a single unit CubeSat, and carries equipment to study water vapour in the Earth's atmosphere, microwave imagery and spacecraft communication.
The Epsilon Launch Vehicle, or Epsilon rocket, is a Japanese solid-fuel rocket designed to launch scientific satellites. It is a follow-on project to the larger and more expensive M-V rocket which was retired in 2006. The Japan Aerospace Exploration Agency (JAXA) began developing the Epsilon in 2007. It is capable of placing a 590 kg payload into Sun-synchronous orbit.
The H3 Launch Vehicle is a Japanese expendable launch system. H3 launch vehicles are liquid-propellant rockets with strap-on solid rocket boosters and are launched from Tanegashima Space Center in Japan. Mitsubishi Heavy Industries (MHI) and JAXA are responsible for the design, manufacture, and operation of the H3. The H3 is the world's first rocket to use an expander bleed cycle for the first stage engine.
Advanced Land Observing Satellite-2 (ALOS-2), also called Daichi-2, is a 2,120 kg (4,670 lb) Japanese satellite launched in 2014. Although the predecessor ALOS satellite had featured 2 optical cameras in addition to L-band radar, ALOS-2 had optical cameras removed to simplify construction and reduce costs. The PALSAR-2 radar is a significant upgrade of the PALSAR radar, allowing higher-resolution spotlight modes in addition to the 10 m resolution survey mode inherited from the ALOS spacecraft. Also, the SPAISE2 automatic ship identification system and the Compact Infra Red Camera (CIRC) will provide supplementary data about sea-going ships and provide early warnings of missile launches.
The Innovative Satellite Technology Demonstration Program is a series of spacecraft missions for testing technology and ideas put forward by universities and private companies. The program demonstrates various experimental devices and technology in space by providing flight opportunities. It is managed by the JAXA Research and Development Directorate. According to JAXA, the goal of this program is to test high risk, innovative technology that will lead to the space industry gaining competitiveness in the international field.
DRUMS is an experimental spacecraft that will test proximity operation near space debris. The microsatellite carries two 'mock space debris' which once deployed will be used as a target for demonstrating approach and contact.
KOSEN-1 is a technology demonstration satellite that will test the deployment of an antenna for observing radio waves emitted from the planet Jupiter. It is a 2U CubeSat, and carries a 7 m (23 ft) antenna. The CubeSat was jointly developed by the National Institute of Technologies in Japan. National Institute of Technologies is known as 'kosen' in Japanese. KOSEN-1 was launched on 9 November 2021 by an Epsilon launch vehicle, as part of the Innovative Satellite Technology Demonstration-2 mission.
RAISE-2 was a smallsat for technology demonstration, part of the Japanese space agency JAXA's Innovative Satellite Technology Demonstration Program. RAISE-2 was launched on 9 November 2021 as the main satellite of Innovative Satellite Technology Demonstration-2. RAISE-2 was developed by Mitsubishi Electric.
PETREL is a technology demonstration satellite being developed by Tokyo Institute of Technology. The microsatellite is equipped with a multispectral camera, which will be used to carry out two distinct missions. One mission is to survey the sky in ultraviolet wavelengths for the field of time-domain astronomy, and the other is to conduct spectroscopic observations of the Earth. PETREL was originally planned to be launched as part of JAXA's 2022 Innovative Satellite Technology Demonstration-3 mission, but wasn't launched. As of September 2024, PETREL is scheduled to be launched during fiscal year 2025 on the first H3-30 test flight.
Advanced Land Observing Satellite 4 (ALOS-4), also called Daichi 4, is a 3,000 kg (6,600 lb) Japanese L-band synthetic-aperture radar (SAR) satellite that was launched on July 1, 2024. It carries PALSAR-3, which is a successor to the PALSAR-2 on ALOS-2 satellite. ALOS-4 is the fourth satellite which carries L-band SAR operated by JAXA, following JERS-1, ALOS, and ALOS-2.