EELV Secondary Payload Adapter

Last updated

The EELV Secondary Payload Adapter (ESPA) is an adapter for launching secondary payloads on orbital launch vehicles.

Contents

Originally developed for US launch vehicles in the 2000s to launch secondary payloads on space missions of the United States Department of Defense that used the Atlas V and Delta IV, the adapter design has become a de facto standard and is now also used for spaceflight missions on non-governmental private spacecraft missions as well. For example, multiple ESPA rings were used on a non-DoD launch of the SpaceX Falcon 9 that carried the Orbcomm OG-2 constellation of communication satellites.

The use of ESPA ring technology reduces launch costs for the primary mission and enables secondary and even tertiary missions with minimal impact to the original mission.

History

Development was funded by the Air Force Research Laboratory Space Vehicles Directorate (AFRL/RV) for the United States Department of Defense (DoD) Space Test Program (STP) under a Small Business Innovative Research (SBIR) grant in the late 1990s. Moog CSA Engineering teamed with AFRL to design, build and qualify the ring in the early 2000s. [1] Additional studies have been done on ESPA applications for lunar and science missions under an SBIR from NASA Ames Research Center. [2] As of 2010, the ring is produced by Moog CSA Engineering. [3] A number of missions have used the ESPA ring. The ESPA ring's maiden mission was on STP-1 in 2007. [1] As of December 2015, the ESPA ring had been used on all 3 EELV-class rockets (Atlas V, Delta IV and Falcon 9). [4] [5] [6]

Multiple ESPA rings may be used on a single launch, stacked to increase the satellite carrying capacity. Two ESPA Grande rings were used on Orbcomm OG-2 flight 1 in 2014 and three stacked Grande rings for the 11-satellite Orbcomm OG-2 flight 2 deployment in 2015. [7]

Technical characteristics

The initial ESPA ring was designed to support a 15,000-pound (6,800 kg) primary payload and up to six 400-pound (180 kg) secondary payloads. Each secondary spacecraft is mounted radially on a 15 inches (380 mm) diameter port and is allocated 24 inches (610 mm) × 28 inches (710 mm) × 38 inches (970 mm) volume. This has led to the colloquial designation of ESPA-class payloads. The design includes a standard electrical interface for the attached payloads; however mission-specific requirements may preclude each secondary payload from receiving more than a single, non-redundant payload separation signal. [2] [ needs update ]

ESPA Grande ports are 24 inches (610 mm) in diameter, and can support 700-pound (320 kg) payloads. [3] [8]

Moog's version of the ESPA Grande supports up to 1,543-pound (700 kg) payloads. [9]

Derivatives

Derivatives of the ESPA ring include satellite dispensers, space tugs and satellite buses.

SHERPA

Commercial derivatives of the ESPA Grande ring include the Spaceflight Secondary Payload System (SSPS) and SHERPA developed and manufactured by Andrews Space under contract to Spaceflight Services. SSPS includes five 24 inches (61 cm)-diameter ports, each capable of carrying payloads weighing up 300 kilograms (660 lb). "The SSPS operates very similar to a standalone spacecraft with a flight computer, electrical power system, orbit determination capability, and payload power switching." [10] SHERPA is a powered variant of SSPS capable of large orbit change. [11]

LCROSS

LCROSS spacecraft (exploded view) Exploded view of LCROSS spacecraft.png
LCROSS spacecraft (exploded view)

When NASA upgraded its Lunar Reconnaissance Orbiter (LRO) mission's launch vehicle to an Atlas V, it freed around 2,200 lbs. of additional mass for what would later become the Lunar Crater Observation and Sensing Satellite (LCROSS). NASA held a competition to see how best to use the space and a number of proposals came from the Ames Research Center. The winning proposal included Moog CSA Engineering's ESPA ring serving as the base mechanical satellite bus to launch the LCROSS spacecraft as a secondary payload under the LRO. LCROSS ultimately impacted the lunar surface and confirmed the presence of water ice. [1]

The LCROSS Lunar-impact water detection mission in 2009 took advantage of the structural capabilities of ESPA ring to attach all six of its science experiments, command and control systems, communications equipment, batteries, solar panels, and even a small monopropellant propulsion system to implement pre-impact payload separation and control. [12]

ESPAStar

The ESPAStar is a comparable design concept by Orbital Sciences Corporation. Its maiden flight was on the AFSPC-11 mission as the EAGLE secondary payload. [13]

Long Duration Propulsive ESPA (LDPE)

The LDPE (Long Duration Propulsive ESPA) is based on a Northrop Grumman payload adapter used to help attach the upper stage to the main satellite in addition to hosting a few slots for other smallsats. However, the entire system is powered by the ESPAStar satellite bus, which is in charge of power consumption and distribution as well as propulsion making it a fully operational space tug capable of deploying different payloads at different orbits. ESPAStar has the capability to host 6 smallsat payloads totaling 1,920 kg (4,230 lb). The system is also able to provide 400 meters per second of delta-V via a Hydrazine propulsion module. [14]

The first LDPE was launched on 7 December 2021 on an Atlas V rocket as part of the STP-3 mission. It carried the Ascent cubesat from the Air Force Research Laboratory that was used to test commercial off-the-shelf technologies in geosynchronous orbit, including cold gas thrusters, electric propulsion, and a global position receiver. [15]

A second LDPE was launched on 1 November 2022 on a Falcon Heavy rocket as part of the USSF-44 mission, and it carried three separable payloads and three hosted payloads. The separable payloads included Alpine, a cubesat from Millennium Space Systems to demonstrate GEO small satellite designs and leverage commercial GEO communications; LINUSS, a Lockheed Martin project consisting of two 12U cubesats to test GEO satellite servicing; and Tetra-1, an SSC small satellite designed as a pathfinder for innovative methods of space vehicle design and on-orbit Tactics Techniques and Procedures development. The hosted payloads included: Mustang, a small sized communications experiment; Xenon, a commercial off-the-shelf component maturation for flight at GEO; and Energetic Charged Particle-Lite, an SSC space weather sensor. [16]

A third LDPE was launched on 15 January 2023 on a Falcon Heavy as part of the USSF-67 mission, and it carried five hosted payloads. [16] Among those, two belonged to the Space Systems Command: Catcher, a prototype sensor to provide local space domain awareness insights, and WASSAT, a sensor consisting of four cameras to search for and track other spacecraft and space debris. The other three payloads have been provided by the Space Rapid Capabilities Office and included two prototypes for space situational awareness missions and one to test encrypted space-to-ground communications. [17]

Related Research Articles

<span class="mw-page-title-main">Falcon 9</span> Partially reusable orbital launch vehicle by SpaceX

Falcon 9 is a partially reusable medium lift launch vehicle that can carry cargo and crew into Earth orbit, produced by American aerospace company SpaceX.

<span class="mw-page-title-main">MidSTAR-1</span>

MidSTAR-1 is an artificial satellite produced by the United States Naval Academy Small Satellite Program. It was sponsored by the United States Department of Defense (DoD) Space Test Program (STP), and was launched on March 9, 2007 at 03:10 UTC, aboard an Atlas V expendable launch vehicle from Cape Canaveral Air Force Station. MidSTAR-1 flew along with FalconSat 3, STPSat 1, and CFESat as secondary payloads; the primary payload was Orbital Express.

<span class="mw-page-title-main">LCROSS</span> Space probe

The Lunar Crater Observation and Sensing Satellite (LCROSS) was a robotic spacecraft operated by NASA. The mission was conceived as a low-cost means of determining the nature of hydrogen detected at the polar regions of the Moon. Launched immediately after discovery of lunar water by Chandrayaan-1, the main LCROSS mission objective was to further explore the presence of water in the form of ice in a permanently shadowed crater near a lunar polar region. It was successful in confirming water in the southern lunar crater Cabeus.

<span class="mw-page-title-main">SpaceQuest</span>

AAC SpaceQuest is a spacecraft components and engineering company located in Fairfax, Virginia, which focuses on the operations of small satellites.

The Space Test Program (STP) is the primary provider of spaceflight for the United States Department of Defense (DoD) space science and technology community. STP is managed by a group within the Advanced Systems and Development Directorate, a directorate of the Space and Missile Systems Center of the United States Space Force. STP provides spaceflight via the International Space Station (ISS), piggybacks, secondary payloads and dedicated launch services.

<span class="mw-page-title-main">Demonstration and Science Experiments</span>

Demonstration and Science Experiments (DSX) was a small spacecraft developed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate to perform experiments to study the radiation environment in medium Earth orbit.

Orbcomm is a family of low Earth orbit communications satellites, operated by the United States satellite communications company Orbcomm. As of July 2014, 51 such satellites have orbited Earth, with 50 still continuing to do so.

<span class="mw-page-title-main">SpaceX CRS-1</span> 2012 American resupply spaceflight to the ISS

SpaceX CRS-1, also known as SpX-1, was SpaceX's first operational cargo mission to the International Space Station, under their Commercial Resupply Services (CRS-1) contract with NASA. It was the third flight for the uncrewed Dragon cargo spacecraft, and the fourth overall flight for the company's two-stage Falcon 9 launch vehicle. The launch occurred on 8 October 2012 at 00:34:07 UTC.

The Rocket City Space Pioneers (RCSP) was one of 29 teams from 17 different countries officially registered and in the competition for the Google Lunar X PRIZE (GLXP) during 2010–2012.

<span class="mw-page-title-main">Space tug</span> Spacecraft used to transfer cargo from one orbit to another

A space tug is a type of spacecraft used to transfer spaceborne cargo from one orbit to another orbit with different energy characteristics. An example would be moving a spacecraft from a low Earth orbit (LEO) to a higher-energy orbit like a geostationary transfer orbit, a lunar transfer, or an escape trajectory.

<span class="mw-page-title-main">Secondary payload</span> Launch of small spacecraft together with larger one

Secondary payload, also known as rideshare payload, is a smaller-sized payload transported to orbit on a launch vehicle that is mostly paid for—and with the date and time of launch and the orbital trajectory determined—by the entity that contracts and pays for the primary launch. As a result, the secondary payload typically obtains a substantially reduced price for transportation services to orbit, by accepting a trade off of the loss of control once the contract is signed and the payload is delivered to the launch vehicle supplier for integration to the launch vehicle. These tradeoffs typically include having little or no control over the launch date/time, the final orbital parameters, or the ability to halt the launch and remove the payload should a payload failure occur during ground processing prior to launch, as the primary payload typically purchases all of these launch property rights via contract with the launch services provider.

<span class="mw-page-title-main">Artemis 2</span> Second orbital flight of the Artemis program

Artemis 2 is the second scheduled mission of NASA's Artemis program, and the first scheduled crewed mission of NASA's Orion spacecraft, currently planned to be launched by the Space Launch System (SLS) in May 2024. The crewed Orion spacecraft will perform a lunar flyby test and return to Earth. This is planned to be the first crewed spacecraft to travel beyond low Earth orbit since Apollo 17 in 1972. Formerly known as Exploration Mission-2 (EM-2), the mission was renamed after the introduction of the Artemis program. Originally, the crewed mission was intended to collect samples from a captured asteroid in lunar orbit by the now canceled robotic Asteroid Redirect Mission.

<span class="mw-page-title-main">Falcon 9 flight 20</span> Falcon 9 space launch that occurred on 22 December 2015 at 01:29:00 UTC

Falcon 9 flight 20 was a Falcon 9 space launch that occurred on 22 December 2015 at 01:29:00 UTC. It was the first time that the first stage of an orbital rocket made a successful return and vertical landing.

<span class="mw-page-title-main">Lunar Flashlight</span> Lunar orbiter by NASA

Lunar Flashlight is a low-cost CubeSat lunar orbiter mission to explore, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans.

<span class="mw-page-title-main">Lunar IceCube</span> Nanosatellite

Lunar IceCube is a NASA nanosatellite orbiter mission to prospect, locate, and estimate amount and composition of water ice deposits on the Moon for future exploitation by robots or humans. It was launched as a secondary payload mission on Artemis 1, the first flight of the Space Launch System (SLS), on 16 November 2022.

SHERPA is a commercial satellite dispenser developed by Andrews Space, a subsidiary of Spaceflight Industries, and was unveiled in 2012. The maiden flight was on 3 December 2018 on a Falcon 9 Block 5 rocket, and it consisted of two separate unpropelled variants of the dispenser.

<i>ArgoMoon</i> Nanosatellite

ArgoMoon is a CubeSat that was launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022 at 06:47:44 UTC. The objective of the ArgoMoon spacecraft is to take detailed images of the Interim Cryogenic Propulsion Stage following Orion separation, an operation that will demonstrate the ability of a cubesat to conduct precise proximity maneuvers in deep space.

Spaceflight, Inc. is an American aerospace company based out of Seattle, Washington, that specializes in organizing rideshare space launches of secondary payloads. It was part of Spaceflight Industries until June 2020.

A satellite dispenser is a space tug usually released from the upper stage of a rocket and designed to fly small secondary payloads to their desired location before deploying them.

References

  1. 1 2 3 Perry, Bill. "ESPA: An Inexpensive Ride to Space for Secondary Payloads". July 2012 Edition of MilsatMagazine. Retrieved 26 September 2012.
  2. 1 2 "Evolved expendable launch vehicle secondary payload adapter". AIAA Space 2001 Conference & Exposition. AIAA. doi:10.2514/6.2001-4701.
  3. 1 2 "ESPA: The EELV Secondary Payload Adapter Heavy Lift. Excess Capacity. Small Satellites". MOOG. 2010. Retrieved 2011-12-25.
  4. United Launch Alliance Successfully Launches First USAF Atlas V
  5. ULA Delta IV AFSPC-4 mission
  6. SpaceX’s Falcon 9 finally launches Orbcomm OG2 mission
  7. "ORBCOMM OG2 Next-Generation Satellite Constellation". Sierra Nevada Corporation. Retrieved 2016-01-04.
  8. Momentus to offer last-miles service from SpaceX rideshare flights
  9. Moog Small Satellite Adapters
  10. Spaceflight Secondary Payload System Archived 2012-07-07 at archive.today , retrieved 2012-05-10.
  11. Jason Andrews. "Spaceflight Secondary Payload System (SSPS) and SHERPA Tug - A New Business Model for Secondary and Hosted Payloads".
  12. Lo, Amy (2009). "Secondary Payloads Using the LCROSS Architecture" (PDF). AIAA. Retrieved 2011-09-27.
  13. "EAGLE". Gunter's Space Center. Retrieved 30 November 2018.
  14. Kordina, Florian (2022-10-30). "USSF-44 | Falcon Heavy". Everyday Astronaut. Retrieved 2022-10-30.
  15. Clark, Stephen (8 December 2021). "Atlas 5 rocket launches Space Force tech demo satellites on marathon mission". Spaceflight Now. Retrieved 11 December 2021.
  16. 1 2 Sodders, Lisa. "Successful USSF-44 Launch 'Sign of What's to Come'". Space Systems Command . Retrieved 8 December 2022.
  17. "Northrop Grumman heralds converted adapter rings as rideshare solution for military payloads". Spaceflight Now. 13 January 2023. Retrieved 16 January 2023.