Multi-layer insulation

Last updated
Closeup of Multi-layer insulation from a satellite. The metal coated plastic layers and the scrim separator are visible. MultiLayerInsulationCloseup.jpg
Closeup of Multi-layer insulation from a satellite. The metal coated plastic layers and the scrim separator are visible.

Multi-layer insulation (MLI) is thermal insulation composed of multiple layers of thin sheets and is often used on spacecraft and cryogenics. Also referred to as superinsulation, [1] MLI is one of the main items of the spacecraft thermal design, primarily intended to reduce heat loss by thermal radiation. In its basic form, it does not appreciably insulate against other thermal losses such as heat conduction or convection. It is therefore commonly used on satellites and other applications in vacuum where conduction and convection are much less significant and radiation dominates. MLI gives many satellites and other space probes the appearance of being covered with gold foil which is the effect of the amber-coloured Kapton layer deposited over the silver Aluminized mylar.

Contents

For non-spacecraft applications, MLI works only as part of a vacuum insulation system. [1] For use in cryogenics, wrapped MLI can be installed inside the annulus of vacuum jacketed pipes. [2] MLI may also be combined with advanced vacuum insulation for use in high temperature applications. [3]

Function and design

The golden areas are MLI blankets on the Mars Reconnaissance Orbiter Mars Reconnaissance Orbiter fully assembled.jpg
The golden areas are MLI blankets on the Mars Reconnaissance Orbiter

The principle behind MLI is radiation balance. To see why it works, start with a concrete example - imagine a square meter of a surface in outer space, held at a fixed temperature of 300 K (27 °C; 80 °F), with an emissivity of 1, facing away from the sun or other heat sources. From the Stefan–Boltzmann law, this surface will radiate 460 W. Now imagine placing a thin (but opaque) layer 1 cm (0.4 in) away from the plate, also with an emissivity of 1. This new layer will cool until it is radiating 230 W from each side, at which point everything is in balance. The new layer receives 460 W from the original plate. 230 W is radiated back to the original plate, and 230 W to space. The original surface still radiates 460 W, but gets 230 W back from the new layers, for a net loss of 230 W. So overall, the radiation losses from the surface have been reduced by half by adding the additional layer.

The superconducting Fault Current Limiter covered by a MLI blanket A superconducting Fault Current Limiter by Frako-Term.jpg
The superconducting Fault Current Limiter covered by a MLI blanket
MLI covering the heat shield of the Huygens probe Huygens thermal multilayer insulation.jpg
MLI covering the heat shield of the Huygens probe

More layers can be added to reduce the loss further. The blanket can be further improved by making the outside surfaces highly reflective to thermal radiation, which reduces both absorption and emission. The performance of a layer stack can be quantified in terms of its overall heat transfer coefficient U, which defines the radiative heat flow rate Q between two parallel surfaces with a temperature difference and area A as

Theoretically, the heat transfer coefficient between two layers with emissivities and , at absolute temperatures and under vacuum, is

where Wm−2K−4 is the Stefan-Boltzmann Constant. If the temperature difference is not too large (, then a stack of N of layers, all with the same emissivity on both sides, will have an overall heat transfer coefficient

where is the average temperature of the layers. Clearly, increasing the number of layers and decreasing the emissivity both lower the heat transfer coefficient, which is equivalent to a higher insulation value. In space, where the apparent outside temperature could be 3 K (cosmic background radiation), the exact U value is different.

Aluminium coated on both sides of these MLI sheets with thicker outer layer (left), white netting spacer (middle), and thinner inner layer (right) which is also crinkled to provide additional separation between the layers. The sheets are perforated to allow air passage during launch. Perforated multi-layer insulation.jpg
Aluminium coated on both sides of these MLI sheets with thicker outer layer (left), white netting spacer (middle), and thinner inner layer (right) which is also crinkled to provide additional separation between the layers. The sheets are perforated to allow air passage during launch.

The layers of MLI can be arbitrarily close to each other, as long as they are not in thermal contact. The separation space only needs to be minute, which is the function of the extremely thin scrim or polyester 'bridal veil' as shown in the photo. To reduce weight and blanket thickness, the internal layers are made very thin, but they must be opaque to thermal radiation. Since they don't need much structural strength, these internal layers are usually made of very thin plastic, about 6 μm (14 mil) thick, such as Mylar or Kapton, coated on one or both sides with a thin layer of metal, typically silver or aluminium. [4] For compactness, the layers are spaced as close to each other as possible, though without touching, since there should be little or no thermal conduction between the layers. A typical insulation blanket has 40 or more layers. [4] The layers may be embossed or crinkled, so they only touch at a few points, or held apart by a thin cloth mesh, or scrim, which can be seen in the picture above. The outer layers must be stronger, and are often thicker and stronger plastic, reinforced with a stronger scrim material such as fiberglass.

In satellite applications, the MLI will be full of air at launch time. As the rocket ascends, this air must be able to escape without damaging the blanket. This may require holes or perforations in the layers, [5] even though this reduces their effectiveness. [6]

In cryogenics, the MLI is the most effective kind of insulation. [7] Therefore, it is commonly used in liquefied gas tanks (e.g. LNG, LN2, LH2, LO2), cryostats, cryogenic pipelines and superconducting devices. Additionally it is valued for its compact size and weight. A blanket composed of 40 layers of MLI has thickness of about 20 mm (0.79 in) [8] and weight of approximately 12 kg/m2 (2.5 lb/sq ft). [9]

Methods tend to vary between manufacturers with some MLI blankets being constructed primarily using sewing technology. The layers are cut, stacked on top of each other, and sewn together at the edges.

Other more recent methods include the use of Computer-aided design and Computer-aided manufacturing technology to weld a precise outline of the final blanket shape using Ultrasonic welding onto a "pack" (the final set of layers before the external "skin" is added by hand.)

Seams and gaps in the insulation are responsible for most of the heat leakage through MLI blankets. A new method is being developed to use polyetheretherketone (PEEK) tag pins (similar to plastic hooks used to attach price tags to garments) to fix the film layers in place instead of sewing to improve the thermal performance. [6]

Additional properties

Spacecraft also may use MLI as a first line of defence against dust impacts. This normally means spacing it a cm or so away from the surface it is insulating. Also, one or more of the layers may be replaced by a mechanically strong material, such as beta cloth.

In most applications the insulating layers must be grounded, so they cannot build up a charge and arc, causing radio interference. Since the normal construction results in electrical as well as thermal insulation, these applications may include aluminium spacers as opposed to cloth scrim at the points where the blankets are sewn together.

Using similar materials, Single-layer Insulation and Dual-layer insulation (SLI and DLI respectively) are also commonplace on spacecraft.

Alternative Sewing Technologies

The seams remain a problematic area where compromises are usually made. The conventional sewing methods cause compressions along stitch lines in multilayer insulation blankets. Hassan Saeed developed a new technology called Spacer Stitching during his research work at ITM, TU Dresden. The patented technology can avoid compressions along stitch lines in multilayer insulation assemblies.

Spacer Stitch.tif

See also

Related Research Articles

Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency . This concept is used in radio astronomy, planetary science, materials science and climatology.

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Thermal radiation</span> Electromagnetic radiation generated by the thermal motion of particles

Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. Thermal radiation transmits as an electromagnetic wave through both matter and vacuum. When matter absorbs thermal radiation its temperature will tend to rise. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared (IR) spectrum. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.

In engineering, a heat shield is a component designed to protect an object or a human operator from being burnt or overheated by dissipating, reflecting, and/or absorbing heat. The term is most often used in reference to exhaust heat management and to systems for dissipating frictional heat. Heat shields are used most commonly in automotive and aerospace.

<i>R</i>-value (insulation) Measure of how well an object, per unit of area, resists conductive flow of heat

The R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat, in the context of construction. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Kirchhoff's law of thermal radiation</span> Law of wavelength-specific emission and absorption

In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium. It is a special case of Onsager reciprocal relations as a consequence of the time reversibility of microscopic dynamics, also known as microscopic reversibility.

<span class="mw-page-title-main">Radiant barrier</span>

A radiant barrier is a type of building material that reflects thermal radiation and reduces heat transfer. Because thermal energy is also transferred by conduction and convection, in addition to radiation, radiant barriers are often supplemented with thermal insulation that slows down heat transfer by conduction or convection.

<span class="mw-page-title-main">Kapton</span> Plastic film material used in low and high-temperature applications

Kapton is a polyimide film used in flexible printed circuits and space blankets, which are used on spacecraft, satellites, and various space instruments. Invented by the DuPont Corporation in the 1960s, Kapton remains stable across a wide range of temperatures, from 4 to 673 K. Kapton is used in electronics manufacturing, space applications, with x-ray equipment, and in 3D printing applications. Its favorable thermal properties and outgassing characteristics result in its regular use in cryogenic applications and in situations where high vacuum environments are experienced.

<span class="mw-page-title-main">Emissivity</span> Capacity of an object to radiate electromagnetic energy

The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects is easily visible to the eye.

Low emissivity refers to a surface condition that emits low levels of radiant thermal (heat) energy. All materials absorb, reflect, and emit radiant energy according to Planck's law but here, the primary concern is a special wavelength interval of radiant energy, namely thermal radiation of materials. In common use, especially building applications, the temperature range of approximately -40 to +80 degrees Celsius is the focus, but in aerospace and industrial process engineering, much broader ranges are of practical concern.

<span class="mw-page-title-main">Space blanket</span> Aluminized plastic sheet used to protect against heat in space

A space blanket is an especially low-weight, low-bulk blanket made of heat-reflective thin plastic sheeting. They are used on the exterior surfaces of spacecraft for thermal control, as well as by people. Their design reduces the heat loss in a person's body, which would otherwise occur quickly due to thermal radiation, water evaporation, or convection. Their low weight and compact size before unfurling make them ideal when space or weight are at a premium. They may be included in first aid kits and with camping equipment. Lost campers and hikers have an additional possible benefit: the shiny surface flashes in the sun, allowing its use as an improvised distress beacon for searchers and as a method of signalling over long distances to other people.

<span class="mw-page-title-main">Outgoing longwave radiation</span> Energy transfer mechanism which enables planetary cooling

In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It may also be referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.

<span class="mw-page-title-main">Idealized greenhouse model</span> Mathematical estimate of planetary temperatures

The temperatures of a planet's surface and atmosphere are governed by a delicate balancing of their energy flows. The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency solar radiation, but are much more opaque to the lower frequency infrared radiation leaving Earth's surface. Thus heat is easily let in, but is partially trapped by these gases as it tries to leave. Rather than get hotter and hotter, Kirchhoff's law of thermal radiation says that the gases of the atmosphere also have to re-emit the infrared energy that they absorb, and they do so, also at long infrared wavelengths, both upwards into space as well as downwards back towards the Earth's surface. In the long-term, the planet's thermal inertia is surmounted and a new thermal equilibrium is reached when all energy arriving on the planet is leaving again at the same rate. In this steady-state model, the greenhouse gases cause the surface of the planet to be warmer than it would be without them, in order for a balanced amount of heat energy to finally be radiated out into space from the top of the atmosphere.

With increased interest in sea ice and its effects on the global climate, efficient methods are required to monitor both its extent and exchange processes. Satellite-mounted, microwave radiometers, such SSMI, AMSR and AMSU, are an ideal tool for the task because they can see through cloud cover, and they have frequent, global coverage. A passive microwave instrument detects objects through emitted radiation since different substance have different emission spectra. To detect sea ice more efficiently, there is a need to model these emission processes. The interaction of sea ice with electromagnetic radiation in the microwave range is still not well understood. In general is collected information limited because of the large-scale variability due to the emissivity of sea ice.

The Gebhart factors are used in radiative heat transfer, it is a means to describe the ratio of radiation absorbed by any other surface versus the total emitted radiation from given surface. As such, it becomes the radiation exchange factor between a number of surfaces. The Gebhart factors calculation method is supported in several radiation heat transfer tools, such as TMG and TRNSYS.

<span class="mw-page-title-main">Spacecraft thermal control</span> Process of keeping all parts of a spacecraft within acceptable temperature ranges

In spacecraft design, the function of the thermal control system (TCS) is to keep all the spacecraft's component systems within acceptable temperature ranges during all mission phases. It must cope with the external environment, which can vary in a wide range as the spacecraft is exposed to the extreme coldness found in the shadows of deep space or to the intense heat found in the unfiltered direct sunlight of outer space. A TCS must also moderate the internal heat generated by the operation of the spacecraft it serves.

The liquid droplet radiator (LDR) or previously termed liquid droplet stream radiator is a proposed lightweight radiator for the dissipation of waste heat generated by power plants, propulsion or spacecraft systems in space.

The skin temperature of an atmosphere is the temperature of a hypothetical thin layer high in the atmosphere that is transparent to incident solar radiation and partially absorbing of infrared radiation from the planet. It provides an approximation for the temperature of the tropopause on terrestrial planets with greenhouse gases present in their atmospheres.

There is a strong scientific consensus that greenhouse effect due to carbon dioxide is a main driver of climate change. Following is an illustrative model meant for a pedagogical purpose, showing the main physical determinants of the effect.

References

  1. 1 2 "Using MLI Blankets under poor vacuum conditions". Meyer Tool & Mfg. Retrieved 2020-11-25.
  2. "Wrapped MLI | Quest Thermal Group". www.questthermal.com. Retrieved 2020-11-25.
  3. "High temp MLI takes vacuum insulation performance to the next level". Advanced Vacuum Insulation for Applications from -270°C to 1000°C. 2019-07-31. Retrieved 2020-11-25.
  4. 1 2 Savage, Chris J. (2003). "Thermal Control of Spacecraft". In Peter W. Fortescue; John Stark; Graham Swinerd (eds.). Spacecraft Systems Engineering (3 ed.). John Wiley and Sons. pp. 378–379. ISBN   978-0-470-85102-9.
  5. "Perforating". Dunmore. Retrieved 27 April 2014.
  6. 1 2 Ryuta Hatakenaka; Takeshi Miyakita; Hiroyuki Sugita (14–18 July 2013). "Thermal Performance and Practical Utility of a MLI Blanket using Plastic Pins for Space Use". 43rd International Conference on Environmental Systems 2013 : Vail, Colorado, USA, 14-18 July 2013. p. 2432. doi:10.2514/6.2013-3503. ISBN   978-1-62748-896-9.
  7. Cryogenic Insulation Systems (Report). January 1999.
  8. Mazzone, L.; Ratcliffe, G.; Rieubland, J.M.; Vandoni, G. (November 21, 2002). Measurements of Multi-Layer Insulation at High Boundary Temperature, Using a Simple Non-Calorimetric Method (PDF) (Report). European Organization for Nuclear Research. Retrieved November 23, 2022.
  9. "Home - Frako-Term". 8 May 2020.