Star tracker

Last updated
The STARS real-time star tracking software operates on an image from EBEX 2012, a high-altitude balloon-borne cosmology experiment launched from Antarctica on 2012-12-29 STARS on EBEX ld2012 image.png
The STARS real-time star tracking software operates on an image from EBEX 2012, a high-altitude balloon-borne cosmology experiment launched from Antarctica on 2012-12-29

A star tracker is an optical device that measures the positions of stars using photocells or a camera. [1] As the positions of many stars have been measured by astronomers to a high degree of accuracy, a star tracker on a satellite or spacecraft may be used to determine the orientation (or attitude) of the spacecraft with respect to the stars. In order to do this, the star tracker must obtain an image of the stars, measure their apparent position in the reference frame of the spacecraft, and identify the stars so their position can be compared with their known absolute position from a star catalog. A star tracker may include a processor to identify stars by comparing the pattern of observed stars with the known pattern of stars in the sky.

Contents

History

In the 1950s and early 1960s, star trackers were an important part of early long-range ballistic missiles and cruise missiles, in the era when inertial navigation systems (INS) were not sufficiently accurate for intercontinental ranges. [2]

Consider a Cold War missile flying towards its target; it initially starts by flying northward, passes over the arctic, and then begins flying southward again. From the missile's perspective, stars behind it appear to move closer to the southern horizon while those in front are rising. Before flight, one can calculate the relative angle of a star based on where the missile should be at that instant if it is in the correct location. That can then be compared to the measured location to produce an "error off" signal that can be used to bring the missile back onto its correct trajectory. [2]

Due to the Earth's rotation, stars that are in a usable location change over the course of a day and the location of the target. Generally, a selection of several bright stars would be used and one would be selected at launch time. For guidance systems based solely on star tracking, some sort of recording mechanism, typically a magnetic tape, was pre-recorded with a signal that represented the angle of the star over the period of a day. At launch, the tape was forwarded to the appropriate time. [2] During the flight, the signal on the tape was used to roughly position a telescope so it would point at the expected position of the star. At the telescope's focus was a photocell and some sort of signal-generator, typically a spinning disk known as a chopper. The chopper causes the image of the star to repeatedly appear and disappear on the photocell, producing a signal that was then smoothed to produce an alternating current output. The phase of that signal was compared to the one on the tape to produce a guidance signal. [2]

Star trackers were often combined with an INS. INS systems measure accelerations and integrate those over time to determine a velocity and, optionally, double-integrate to produce a location relative to its launch location. Even tiny measurement errors, when integrated, add up to an appreciable error known as "drift". For instance, the N-1 navigation system developed for the SM-64 Navaho cruise missile drifted at a rate of 1 nautical mile per hour, meaning that after a two-hour flight the INS would be indicating a position 2 nautical miles (3.7 km; 2.3 mi) away from its actual location. This was outside the desired accuracy of about half a mile.

In the case of an INS, the magnetic tape can be removed and those signals instead provided by the INS. The rest of the system works as before; the signal from the INS roughly positions the star tracker, which then measures the actual location of the star and produces an error signal. This signal is then used to correct the position being generated from the INS, reducing the accumulated drift back to the limit of the accuracy of the tracker. [2] These "stellar inertial" systems were especially common from the 1950s through the 1980s, although some systems use it to this day. [3] [4]

Current technology

Many models [5] [6] [7] [8] [9] are currently available. There also exist open projects designed to be used for the global CubeSat researchers' and developers' community. [10] [11] Star trackers, which require high sensitivity, may become confused by sunlight reflected from the spacecraft, or by exhaust gas plumes from the spacecraft thrusters (either sunlight reflection or contamination of the star tracker window). Star trackers are also susceptible to a variety of errors (low spatial frequency, high spatial frequency, temporal, ...) in addition to a variety of optical sources of error (spherical aberration, chromatic aberration, etc.). There are also many potential sources of confusion for the star identification algorithm (planets, comets, supernovae, the bimodal character of the point spread function for adjacent stars, other nearby satellites, point-source light pollution from large cities on Earth, ...). There are roughly 57 bright navigational stars in common use. However, for more complex missions, entire star field databases are used to determine spacecraft orientation. A typical star catalogue for high-fidelity attitude determination is originated from a standard base catalog (for example from the United States Naval Observatory) and then filtered to remove problematic stars, for example due to apparent magnitude variability, color index uncertainty, or a location within the Hertzsprung-Russell diagram implying unreliability. These types of star catalogs can have thousands of stars stored in memory on board the spacecraft, or else processed using tools at the ground station and then uploaded.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Navigation</span> Process of monitoring and controlling the movement of a craft or vehicle from one place to another

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation.

<span class="mw-page-title-main">Transit (satellite)</span> Satellite navigation system

The Transit system, also known as NAVSAT or NNSS, was the first satellite navigation system to be used operationally. The radio navigation system was primarily used by the U.S. Navy to provide accurate location information to its Polaris ballistic missile submarines, and it was also used as a navigation system by the Navy's surface ships, as well as for hydrographic survey and geodetic surveying. Transit provided continuous navigation satellite service from 1964, initially for Polaris submarines and later for civilian use as well. In the Project DAMP Program, the missile tracking ship USAS American Mariner also used data from the satellite for precise ship's location information prior to positioning its tracking radars.

<span class="mw-page-title-main">Celestial navigation</span> Navigation using astronomical objects to determine position

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as dead reckoning. Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.

<span class="mw-page-title-main">Stellar parallax</span> Concept in astronomy

Stellar parallax is the apparent shift of position (parallax) of any nearby star against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU).

<span class="mw-page-title-main">Adaptive optics</span> Technique used in optical systems

Adaptive optics (AO) is a technique of precisely deforming a mirror in order to compensate for light distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array.

Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive detector of a radar signal—provided by an external ("offboard") source—as it reflects off the target. Semi-active missile systems use bistatic continuous-wave radar.

<span class="mw-page-title-main">Missile guidance</span> Variety of methods of guiding a missile

Missile guidance refers to a variety of methods of guiding a missile or a guided bomb to its intended target. The missile's target accuracy is a critical factor for its effectiveness. Guidance systems improve missile accuracy by improving its Probability of Guidance (Pg).

<span class="mw-page-title-main">Apollo PGNCS</span> Apollo spacecraft guidance system

The Apollo primary guidance, navigation, and control system was a self-contained inertial guidance system that allowed Apollo spacecraft to carry out their missions when communications with Earth were interrupted, either as expected, when the spacecraft were behind the Moon, or in case of a communications failure. The Apollo command module (CM) and lunar module (LM), were each equipped with a version of PGNCS. PGNCS, and specifically its computer, were also the command center for all system inputs from the LM, including the alignment optical telescope, the radar system, the manual translation and rotation device inputs by the astronauts as well as other inputs from the LM systems.

<span class="mw-page-title-main">Infrared homing</span> Weapon guidance system utilizing the targets infrared emissions to track it

Infrared homing is a passive weapon guidance system which uses the infrared (IR) light emission from a target to track and follow it seamlessly. Missiles which use infrared seeking are often referred to as "heat-seekers" since infrared is radiated strongly by hot bodies. Many objects such as people, vehicle engines and aircraft generate and emit heat and so are especially visible in the infrared wavelengths of light compared to objects in the background.

Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse.

<span class="mw-page-title-main">Optical chopper</span>

An optical chopper is a device which periodically interrupts a light beam. Three types are available: variable frequency rotating disc choppers, fixed frequency tuning fork choppers, and optical shutters. A rotating disc chopper was famously used in 1849 by Hippolyte Fizeau in the first non-astronomical measurement of the speed of light.

A positioning system is a system for determining the position of an object in space. One of the most well-known and commonly used positioning systems is the Global Positioning System (GPS).

<span class="mw-page-title-main">Fine guidance sensor</span> Space telescope pointing device

A fine guidance sensor (FGS) is an instrument on board a space telescope that provides high-precision pointing information as input to the telescope's attitude control systems. Interferometric FGSs have been deployed on the Hubble Space Telescope; a different technical approach is used for the James Webb Space Telescope's FGSs. In some specialized cases, such as astrometry, FGSs can also be used as scientific instruments.

Polar alignment is the act of aligning the rotational axis of a telescope's equatorial mount or a sundial's gnomon with a celestial pole to parallel Earth's axis.

A PIGA is a type of accelerometer that can measure acceleration and simultaneously integrates this acceleration against time to produce a speed measure as well. The PIGA's main use is in Inertial Navigation Systems (INS) for guidance of aircraft and most particularly for ballistic missile guidance. It is valued for its extremely high sensitivity and accuracy in conjunction with operation over a wide acceleration range. The PIGA is still considered the premier instrument for strategic grade missile guidance, though systems based on MEMS technology are attractive for lower performance requirements.

<span class="mw-page-title-main">Guidance, navigation, and control</span> Branch of engineering

Guidance, navigation and control is a branch of engineering dealing with the design of systems to control the movement of vehicles, especially, automobiles, ships, aircraft, and spacecraft. In many cases these functions can be performed by trained humans. However, because of the speed of, for example, a rocket's dynamics, human reaction time is too slow to control this movement. Therefore, systems—now almost exclusively digital electronic—are used for such control. Even in cases where humans can perform these functions, it is often the case that GNC systems provide benefits such as alleviating operator work load, smoothing turbulence, fuel savings, etc. In addition, sophisticated applications of GNC enable automatic or remote control.

<span class="mw-page-title-main">Inertial navigation system</span> Continuously computed dead reckoning

An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

<span class="mw-page-title-main">Inertial measurement unit</span> Accelerometer-based navigational device

An inertial measurement unit (IMU) is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. When the magnetometer is included, IMUs are referred to as IMMUs.

<span class="mw-page-title-main">Contrast seeker</span> Missile guidance system

Optical contrast seekers, or simply contrast seekers, are a type of missile guidance system using a television camera as its primary input. The camera is initially pointed at a target and then locked on, allowing the missile to fly to its target by keeping the image stable within the camera's field of view.

References

  1. "Star Camera". NASA. May 2004. Archived from the original on July 21, 2011. Retrieved 25 May 2012.
  2. 1 2 3 4 5 Hobbs, Marvin (2010). Basics of Missile Guidance and Space Techniques. Wildside Press. pp. 1–104. ISBN   9781434421258.
  3. Hambling, David (2018-02-15). "Launching a Missile From a Submarine Is Harder Than You Think". Popular Mechanics. Retrieved 2020-06-12.
  4. "Star Trackers". Goodrich. Archived from the original on May 17, 2008. Retrieved 25 May 2012.
  5. "Ball Aerospace star trackers". Ballaerospace.com. Retrieved 2013-09-09.
  6. "Attitude and Orbit Control Systems". Jena-optronik.de. Retrieved 2013-09-09.
  7. "Optronic activities". Sodern. Archived from the original on 2018-03-08. Retrieved 2017-11-09.
  8. "OpenStartracker". UBNL . Retrieved 2018-01-14.
  9. Gutierrez, Samuel T.; Fuentes, Cesar I.; Diaz, Marcos A. (2020). "Introducing SOST: An Ultra-Low-Cost Star Tracker Concept Based on a Raspberry Pi and Open-Source Astronomy Software". IEEE Access. 8: 166320–166334. Bibcode:2020IEEEA...8p6320G. doi: 10.1109/ACCESS.2020.3020048 . S2CID   221846012.
  10. P, Bharat Chandra; Sarpotdar, Mayuresh; Nair, Binukumar G.; Rai, Richa; Mohan, Rekhesh; Mathew, Joice; Safonova, Margarita; Murthy, Jayant (2022-07-01). "Low-Cost Raspberry Pi Star Sensor for Small Satellites". Journal of Astronomical Telescopes, Instruments, and Systems. 8 (3): 036002. arXiv: 2207.03087 . Bibcode:2022JATIS...8c6002C. doi:10.1117/1.JATIS.8.3.036002. ISSN   2329-4124. S2CID   250334413.