Spherical aberration

Last updated
On top is a depiction of a perfect lens without spherical aberration: all incoming rays are focused in the focal point.
The bottom example depicts a real lens with spherical surfaces, which produces spherical aberration: The different rays do not meet after the lens in one focal point. The further the rays are from the optical axis, the closer to the lens they intersect the optical axis (positive spherical aberration).
(Drawing is exaggerated.) Spherical aberration 2.svg
On top is a depiction of a perfect lens without spherical aberration: all incoming rays are focused in the focal point.
The bottom example depicts a real lens with spherical surfaces, which produces spherical aberration: The different rays do not meet after the lens in one focal point. The further the rays are from the optical axis, the closer to the lens they intersect the optical axis (positive spherical aberration).
(Drawing is exaggerated.)
Spherical aberration of collimated light incident on a concave spherical mirror. Caustic of a circle 2.svg
Spherical aberration of collimated light incident on a concave spherical mirror.

In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of manufacturing. Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems. The effect of spherical aberration was first identified in the 11th century by Ibn al-Haytham who discussed it in his work Kitāb al-Manāẓir. [1]

Contents

Overview

A spherical lens has an aplanatic point (i.e., no spherical aberration) only at a lateral distance from the optical axis that equals the radius of the spherical surface divided by the index of refraction of the lens material.

Spherical aberration makes the focus of telescopes and other instruments less than ideal. This is an important effect, because spherical shapes are much easier to produce than aspherical ones. In many cases, it is cheaper to use multiple spherical elements to compensate for spherical aberration than it is to use a single aspheric lens.

"Positive" spherical aberration means rays near the outer edge of a lens are bent more than would be predicted for an ideal lens. "Negative" spherical aberration means such rays are bent less than would be predicted.

The effect is proportional to the fourth power of the diameter and inversely proportional to the third power of the focal length, so it is much more pronounced at short focal ratios, i.e., "fast" lenses.

Longitudinal sections through a focused beam with negative (top row), zero (middle row), and positive spherical aberration (bottom row). The lens is to the left. Spherical-aberration-slice.jpg
Longitudinal sections through a focused beam with negative (top row), zero (middle row), and positive spherical aberration (bottom row). The lens is to the left.

Correction

In lens systems, aberrations can be minimized using combinations of convex and concave lenses, or by using aspheric lenses or aplanatic lenses.

Lens systems with aberration correction are usually designed by numerical ray tracing. For simple designs, one can sometimes analytically calculate parameters that minimize spherical aberration. For example, in a design consisting of a single lens with spherical surfaces and a given object distance o, image distance i, and refractive index n, one can minimize spherical aberration by adjusting the radii of curvature and of the front and back surfaces of the lens such that

, where the signs of the radii follow the Cartesian sign convention.
A point source as imaged by a system with negative (top row), zero (middle row), and positive spherical aberration (bottom row). The middle column shows the focused image, columns to the left show defocusing toward the inside, and columns to the right show defocusing toward the outside. Spherical-aberration-disk.jpg
A point source as imaged by a system with negative (top row), zero (middle row), and positive spherical aberration (bottom row). The middle column shows the focused image, columns to the left show defocusing toward the inside, and columns to the right show defocusing toward the outside.

For small telescopes using spherical mirrors with focal ratios shorter than f/10, light from a distant point source (such as a star) is not all focused at the same point. Particularly, light striking the inner part of the mirror focuses farther from the mirror than light striking the outer part. As a result, the image cannot be focused as sharply as if the aberration were not present. Because of spherical aberration, telescopes with focal ratio less than f/10 are usually made with non-spherical mirrors or with correcting lenses.

Spherical aberration can be eliminated by making lenses with an aspheric surface. Descartes showed that lenses whose surfaces are well-chosen Cartesian ovals (revolved around the central symmetry axis) can perfectly image light from a point on the axis or from infinity in the direction of the axis. Such a design yields completely aberration-free focusing of light from a distant source. [2]

In 2018, Rafael G. González-Acuña and Héctor A. Chaparro-Romo, graduate students at the National Autonomous University of Mexico and the Monterrey Institute of Technology and Higher Education in Mexico, found a closed formula for a lens surface that eliminates spherical aberration. [3] [4] [5] Their equation can be applied to specify a shape for one surface of a lens, where the other surface has any given shape.

Estimation of the aberrated spot diameter

Many ways to estimate the diameter of the focused spot due to spherical aberration are based on ray optics. Ray optics, however, does not consider that light is an electromagnetic wave. Therefore, the results can be wrong due to interference effects arisen from the wave nature of light.

Coddington notation

A rather simple formalism based on ray optics, which holds for thin lenses only, is the Coddington notation. [6] In the following, n is the lens' refractive index, o is the object distance, i is the image distance, h is the distance from the optical axis at which the outermost ray enters the lens, is the first lens radius, is the second lens radius, and f is the lens' focal length. The distance h can be understood as half of the clear aperture.

By using the Coddington factors for shape, s, and position, p,

one can write the longitudinal spherical aberration as [6]

If the focal length f is very much larger than the longitudinal spherical aberration LSA, then the transverse spherical aberration, TSA, which corresponds to the diameter of the focal spot, is given by

See also

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Numerical aperture</span> Characteristic of an optical system

In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the property that it is constant for a beam as it goes from one material to another, provided there is no refractive power at the interface. The exact definition of the term varies slightly between different areas of optics. Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective, and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.

<span class="mw-page-title-main">Chromatic aberration</span> Failure of a lens to focus all colors on the same point

In optics, chromatic aberration (CA), also called chromatic distortion, color aberration, color fringing, or purple fringing, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Since the focal length of the lens varies with the colour of the light different colours of light are brought to focus at different distances from the lens or with different levels of magnification. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.

The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.

<span class="mw-page-title-main">Achromatic lens</span> Lens that is designed to limit the effects of chromatic and spherical aberration

An achromatic lens or achromat is a lens that is designed to limit the effects of chromatic and spherical aberration. Achromatic lenses are corrected to bring two wavelengths into focus on the same plane. Wavelengths in between these two then have better focus error than could be obtained with a simple lens.

<span class="mw-page-title-main">Optical telescope</span> Telescope for observations with visible light

An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Gradient-index optics</span>

Gradient-index (GRIN) optics is the branch of optics covering optical effects produced by a gradient of the refractive index of a material. Such gradual variation can be used to produce lenses with flat surfaces, or lenses that do not have the aberrations typical of traditional spherical lenses. Gradient-index lenses may have a refraction gradient that is spherical, axial, or radial.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

<span class="mw-page-title-main">Eyepiece</span> Type of lens attached to a variety of optical devices such as telescopes and microscopes

An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through an optical device to observe an object or sample. The objective lens or mirror collects light from an object or sample and brings it to focus creating an image of the object. The eyepiece is placed near the focal point of the objective to magnify this image to the eyes. The amount of magnification depends on the focal length of the eyepiece.

<span class="mw-page-title-main">Wavefront</span> Locus of points at equal phase in a wave

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

<span class="mw-page-title-main">Cassegrain reflector</span> Combination of concave and convex mirrors

The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Thin lens</span> Lens with a thickness that is negligible

In optics, a thin lens is a lens with a thickness that is negligible compared to the radii of curvature of the lens surfaces. Lenses whose thickness is not negligible are sometimes called thick lenses.

In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the focal points, the principal points, and the nodal points; there are two of each. For ideal systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points; in fact, only four points are necessary: the two focal points and either the principal points or the nodal points. The only ideal system that has been achieved in practice is a plane mirror, however the cardinal points are widely used to approximate the behavior of real optical systems. Cardinal points provide a way to analytically simplify an optical system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations.

<span class="mw-page-title-main">Curved mirror</span> Mirror with a curved reflecting surface

A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in optical devices such as reflecting telescopes that need to image distant objects, since spherical mirror systems, like spherical lenses, suffer from spherical aberration. Distorting mirrors are used for entertainment. They have convex and concave regions that produce deliberately distorted images. They also provide highly magnified or highly diminished (smaller) images when the object is placed at certain distances.

<span class="mw-page-title-main">Toric lens</span> Type of lens

A toric lens is a lens with different optical power and focal length in two orientations perpendicular to each other. One of the lens surfaces is shaped like a "cap" from a torus, and the other one is usually spherical. Such a lens behaves like a combination of a spherical lens and a cylindrical lens. Toric lenses are used primarily in eyeglasses, contact lenses and intraocular lenses to correct astigmatism.

<span class="mw-page-title-main">Petzval field curvature</span> Optical aberration

Petzval field curvature, named for Joseph Petzval, describes the optical aberration in which a flat object normal to the optical axis cannot be brought properly into focus on a flat image plane. Field curvature can be corrected with the use of a field flattener, designs can also incorporate a curved focal plane like in the case of the human eye in order to improve image quality at the focal surface.

References

  1. Boudrioua, Azzedine; Rashed, Roshdi; Lakshminarayanan, Vasudevan (2017-08-15). Light-Based Science: Technology and Sustainable Development, The Legacy of Ibn al-Haytham. CRC Press. ISBN   978-1-351-65112-7.
  2. Villarino, Mark B (2007). "Descartes' perfect lens". arXiv: 0704.1059 [math.GM].
  3. Machuca, Eduardo (July 5, 2019). "Goodbye Aberration: Physicist Solves 2,000-Year-Old Optical Problem". PetaPixel. Retrieved July 10, 2019.
  4. González-Acuña, Rafael G.; Chaparro-Romo, Héctor A. (2018). "General formula for bi-aspheric singlet lens design free of spherical aberration". Applied Optics. 57 (31): 9341–9345. arXiv: 1811.03792 . Bibcode:2018ApOpt..57.9341G. doi:10.1364/AO.57.009341. PMID   30461981. S2CID   53695913.
  5. Liszewski, Andrew (August 7, 2019). "A Mexican Physicist Solved a 2,000-Year Old Problem That Will Lead to Cheaper, Sharper Lenses". Gizmodo . Retrieved August 7, 2019.
  6. 1 2 Smith, T. T. (1922). "Spherical Aberration in thin lenses". Scientific Papers of the Bureau of Standards. 18: 559–584. doi: 10.6028/nbsscipaper.127 .