Dynamics Explorer ( DE-1 and DE-2 or Explorer 62 and Explorer 63) was a NASA mission, launched on 3 August 1981, and terminated on 28 February 1991. [1] It consisted of two unmanned satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere. [2]
The Dynamics Explorer (DE) mission's general objective is to investigate the strong interactive processes coupling the hot, tenuous, convecting plasmas of the magnetosphere and the cooler, denser plasma and gasses corotating in the Earth's ionosphere, upper atmosphere, and plasmasphere. Two satellites, DE-1 and DE-2, were launched together and were placed in polar coplanar orbits, permitting simultaneous measurements at high and low altitudes in the same field-line region. The DE-1 spacecraft (high-altitude mission) uses an elliptical orbit selected to allow (1) measurements extending from the hot magnetospheric plasma through the plasmasphere to the cool ionosphere; (2) global auroral imaging, wave measurements in the heart of the magnetosphere, and crossing of auroral field lines at several Earth radii; and (3) measurements for significant periods along a magnetic field flux tube. [2]
The spacecraft approximated a short polygon 137 cm (54 in) in diameter and 115 cm (45 in) high. The antennas in the X-Y plane measured 200 m (660 ft) tip-to-tip, and on the Z-axis are 9 m (30 ft) tip-to-tip. Two 6 m (20 ft) booms are provided for remote measurements. Power is supplied by a solar cell array, mounted on the side and end panels. The spacecraft is spin-stabilized, with the spin axis normal to the orbital plane, and the spin rate at 10 ± 0.1 rpm. A pulse-code modulation (PCM) telemetry data system is used that operates in real time or in a tape recorder mode. Data have been acquired on a science-problem-oriented basis, with closely coordinated operations of the various instruments, both satellites, and supportive experiments. Data acquired from the instruments are temporarily stored on tape recorders before transmission at an 8:1 playback-to-record ratio. Additional operational flexibility allows a playback-to-record ratio of 4:1. The primary data rate is 16,384 bits per second. Since commands are stored in a command memory unit, spacecraft operations are not real time, except for the transmission of the wideband analog data from the Plasma Wave Instrument (1981-070A-02). On 22 October 1990, the science operations were terminated. On 28 February 1991, Dynamics Explorer 1 operations were officially terminated. [2]
Dynamics Explorer 1 carried the following instruments: [2]
In addition, there were two Earth-based investigations, Auroral Physics Theory and Controlled and Naturally Occurring Wave Particle Interactions Theory. The later involved broadcasting very-low-frequency/low-frequency (0.5–200-kHz) signals from a transmitter located at Siple Station, Antarctica, which were received by the PWI instrument on Dynamics Explorer 1.
Ionosphere, magnetosphere, plasmapause, plasmasphere, and trapped particle belts.
The Dynamics Explorer 2 carried the following instruments for data collection:
As a result of a malfunction in the Thor-Delta 3913 launch vehicle in which its main engine shut off slightly early, DE-2 was placed into a slightly lower orbit than was anticipated. This was not a serious problem, however, and the spacecraft had lasted its expected lifespan when it re-entered the Earth's atmosphere on 19 February 1983.
An overview of the results from the first 5 years of the mission was published in a special edition of Reviews of Geophysics. [6]
DE-1, being in a higher orbit, continued to collect data until 28 February 1991, when the mission was officially terminated.
Nozomi was a Japanese Mars orbiter that failed to reach Mars due to electrical failure. It was constructed by the Institute of Space and Astronautical Science, University of Tokyo and launched on July 4, 1998, at 03:12 JST with an on-orbit dry mass of 258 kg and 282 kg of propellant. The Nozomi mission was terminated on December 31, 2003.
Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.
IMAGE was a NASA Medium Explorer mission that studied the global response of the Earth's magnetosphere to changes in the solar wind. It was believed lost but as of August 2018 might be recoverable. It was launched 25 March 2000, at 20:34:43.929 UTC, by a Delta II launch vehicle from Vandenberg Air Force Base on a two-year mission. Almost six years later, it unexpectedly ceased operations in December 2005 during its extended mission and was declared lost. The spacecraft was part of NASA's Sun-Earth Connections Program, and its data has been used in over 400 research articles published in peer-reviewed journals. It had special cameras that provided various breakthroughs in understanding the dynamics of plasma around the Earth. The principal investigator was Jim Burch of the Southwest Research Institute.
Explorer 32, also known as Atmosphere Explorer-B (AE-B), was a NASA satellite launched by the United States to study the Earth's upper atmosphere. It was launched from Cape Canaveral on a Delta C1 launch vehicle, on 25 May 1966. It was the second of five "Atmosphere Explorer", the first being Explorer 17. Though it was placed in a higher-than-expected orbit by a malfunctioning second stage on its launch vehicle, Explorer 32 returned data for ten months before failing due to a sudden depressurization. The satellite reentered the Earth's atmosphere on 22 February 1985.
Cluster II was a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission was composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission was extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.
The following is a chronology of discoveries concerning the magnetosphere.
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere. The outer boundary of the plasmasphere is known as the plasmapause, which is defined by an order of magnitude drop in plasma density. In 1963 American scientist Don Carpenter and Soviet astronomer Konstantin Gringauz proved the plasmasphere and plasmapause's existence from the analysis of very low frequency (VLF) whistler wave data. Traditionally, the plasmasphere has been regarded as a well behaved cold plasma with particle motion dominated entirely by the geomagnetic field and, hence, co-rotating with the Earth.
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.
The Global Geospace Science (GGS) Polar satellite was a NASA science spacecraft designed to study the polar magnetosphere and aurorae. It was launched into orbit in February 1996, and continued operations until the program was terminated in April 2008. The spacecraft remains in orbit, though it is now inactive. Polar is the sister ship to GGS Wind.
C/NOFS, or Communications/Navigation Outage Forecasting System was a USAF satellite developed by the Air Force Research Laboratory (AFRL) Space Vehicles Directorate to investigate and forecast scintillations in the Earth's ionosphere. It was launched by an Orbital Sciences Corporation Pegasus-XL launch vehicle at 17:02:48 UTC on 16 April 2008 and decayed on 28 November 2015.
The Jicamarca Radio Observatory (JRO) is the equatorial anchor of the Western Hemisphere chain of Incoherent Scatter Radar (ISR) observatories extending from Lima, Peru to Søndre Strømfjord, Greenland. JRO is the premier scientific facility in the world for studying the equatorial ionosphere. The observatory is about half an hour drive inland (east) from Lima and 10 km from the Central Highway. The magnetic dip angle is about 1°, and varies slightly with altitude and year. The radar can accurately determine the direction of the Earth's magnetic field (B) and can be pointed perpendicular to B at altitudes throughout the ionosphere. The study of the equatorial ionosphere is rapidly becoming a mature field due, in large part, to the contributions made by JRO in radio science.
Explorer 54, also known as AE-D, was a NASA scientific satellite belonging to the Atmosphere Explorer series launched on 6 October 1975 from Vandenberg Air Force Base aboard a Thor-Delta 2910 launch vehicle.
Energetic Neutral Atom (ENA) imaging is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.
The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.
Student Nitric Oxide Explorer, was a NASA small scientific satellite which studied the concentration of nitric oxide in the thermosphere. It was launched in 1998 as part of NASA's Explorer program. The satellite was the first of three missions developed within the Student Explorer Demonstration Initiative (STEDI) program funded by the NASA and managed by the Universities Space Research Association (USRA). STEDI was a pilot program to demonstrate that high-quality space science can be carried out with small, low-cost free-flying satellites on a time scale of two years from go-ahead to launch. The satellite was developed by the University of Colorado Boulder's Laboratory for Atmospheric and Space Physics (LASP) and had met its goals by the time its mission ended with reentry in December 2003.
Explorer 51, also known as AE-C, was a NASA scientific satellite belonging to the Atmosphere Explorer series launched on 16 December 1973, at 06:18:00 UTC, from Vandenberg aboard a Delta 1900 launch vehicle.
Explorer 55, also known as AE-E, was a NASA scientific satellite belonging to the Atmosphere Explorer series launched on 20 November 1975 from Cape Canaveral Air Force Station (CCAFS) aboard a Thor-Delta 2910 launch vehicle.
AMPTE-Charge Composition Explorer, also called as AMPTE-CCE or Explorer 65, was a NASA satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.
Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.
Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.