![]() Explorer 26 satellite | |
Names | EPE-D NASA S-3C |
---|---|
Mission type | Space physics |
Operator | NASA |
COSPAR ID | 1964-086A |
SATCAT no. | 00963 |
Mission duration | 12 months (planned) 56 years, 8 months and 1 day (achieved) |
Spacecraft properties | |
Spacecraft | Explorer XXVI |
Bus | S3 |
Manufacturer | Goddard Space Flight Center |
Launch mass | 45.8 kg (101 lb) [1] |
Power | 4 deployable solar arrays and batteries |
Start of mission | |
Launch date | 21 December 1964, 09:00:03 GMT |
Rocket | Thor-Delta C (Thor 393 / Delta 027) |
Launch site | Cape Canaveral, LC-17A |
Contractor | Douglas Aircraft Company |
Entered service | 21 December 1964 |
End of mission | |
Last contact | 26 May 1967 |
Decay date | 23 August 2021 |
Orbital parameters | |
Reference system | Geocentric orbit [2] |
Regime | Highly elliptical orbit |
Perigee altitude | 171 km (106 mi) |
Apogee altitude | 8,545 km (5,310 mi) |
Inclination | 18.10° |
Period | 184.50 minutes |
Instruments | |
Fluxgate Magnetometers Omnidirectional and Unidirectional Electron and Proton Fluxes Proton-Electron Scintillation Detector Solar Cell Damage Solid-State Electron Detector | |
Explorer Program |
Explorer 26 was a NASA satellite launched on 21 December 1964, as part of NASA's Explorer program. Its primary mission was to study the Earth's magnetic field. [1]
Explorer 26 was a spin-stabilized, solar-cell-powered spacecraft instrumented to measure trapped particles and the geomagnetic field and weighing 45.8 kg (101 lb). [1]
It carried five experiments: Solid-State Electron Detector, Omnidirectional and Unidirectional Electron and Proton Fluxes, Fluxgate Magnetometers, Proton-Electron Scintillation Detector, and Solar Cell Damage. [1] The Solar Cell Damage experiment was intended to quantify the degradation of solar cell performance due to radiation, and evaluate the effectiveness of glass shields at preventing this degradation. [3] A 16-channel PFM/PM time-division multiplexed telemeter was used. The time required to sample the 16 channels (one frame period) was 0.29 seconds. Half of the channels were used to convey eight-level digital information. The other channels were used for analog information. During ground processing, the analog information was digitized with an accuracy of 1/800th of full scale. One analog channel was subcommutated in a 16-frame-long pattern and used to telemeter spacecraft temperatures, power system voltages, currents, etc. A digital solar aspect sensor measured the spin period and phase, digitized to 0.036 seconds, and the angle between the spin axis and Sun direction to about 3° intervals. [1]
The purpose of this experiment was to measure the magnitude and direction of the Earth's magnetic field over the spacecraft orbit. Three orthogonal components were measured by a boom-mounted biaxial magnetometer during each spacecraft revolution. Each axis had a range of plus and minus 2000 nT and an accuracy of 5 nT. The sampling rate was 3.13 Hz. The experiment provided useful data from launch until 30 June 1965, after which spacecraft tumble rendered field direction determination impractical. [4]
Omnidirectional fluxes of 40- to 110-MeV protons and of electrons greater than about 4 MeV were separably measured by a plastic scintillator. A second plastic scintillator with an 8° half-angle aperture and a look direction perpendicular to the spacecraft spin axis separably measured protons above 5.2 MeV and electrons above 0.5 MeV. The ability to distinguish between the particle types was due to the presence of two discrimination levels associated with each detector. High-quality data transmission from this experiment was essentially continuous from launch until about the middle of 1966, and then intermittent. [5]
This experiment was designed to measure the directional fluxes and spectra of low-energy trapped and auroral protons and electrons. It employed a 5-mg-thick powder phosphor scintillator with a 1000-A aluminum coating. Additional absorbers were inserted in the detector aperture by a 16-position stepped wheel. The aperture was pointed at 45° to the spin axis. Due to the thinness and type of phosphor, the detector in the pulse mode would respond only to low-energy ions, and, therefore, essentially measured the flux of protons that penetrated the absorbers and stopped in the phosphor. Both the pulse counting rate and the phototube current were telemetered once each frame period. Sixteen readings were telemetered in each wheel position, and thus one complete set of data was obtained every 256 frames (one wheel revolution = 80 s). Protons in seven energy ranges were measured. The high-energy limit was about 10 MeV for all ranges, and the low-energy cutoffs were 97, 125, 168, 295, 495, 970, and 1700 keV. The energy fluxes of electrons in three ranges were measured separately using scatter geometry, absorbers, and the phototube current. The low-energy cutoffs were 17, 33, and 75 keV, and the high-energy cutoff was about 100 keV for all three ranges. [6]
Trapped electrons and protons in the earth's Van Allen belts were measured using a combination of six omnidirectional and directional solid-state particle detectors (silicon p-n junctions). Electrons were analyzed in the energy ranges E>1 MeV, E>3.5 MeV, and E>2.5 MeV with the three omnidirectional detectors (E1, E2, E3), and in the ranges E>0.3 MeV, E>0.45 MeV, and E>1.7 MeV with the three directional detectors (E5, E6, E7). Protons were analyzed in the energy ranges E>10 MeV, E>27 MeV, and E>21 MeV with the omnidirectional detectors, and in the ranges E>1.5 MeV, E>5.0 MeV, and E>16 MeV with the directional detectors. Species discrimination was not always possible. Omnidirectional data were accumulated and telemetered every 1.43 s. Directional data were accumulated for 0.145 s and telemetered every 0.29 s. The spacecraft spin period increased from 0.03 min to 0.5 min during the spacecraft life. Proton data were primarily useful in identifying proton contamination of electron counting rates. The instrument behaved well throughout the spacecraft life. [7]
Explorer 26 was launched from Cape Canaveral (CCAFS) at Cape Canaveral Space Launch Complex 17 (LC-17A) on a Thor-Delta C launch vehicle on 21 December 1964 at 09:00:03 GMT. [8]
The spacecraft systems functioned well, except for some undervoltage turnoffs, until 26 May 1967, when the telemeter failed. The initial spin rate was 33 rpm, and the spin axis direction was right ascension 272.8° and declination 21.5°. The spin rate decreased with time to 2 rpm on 9 September 1965. For the balance of its life, the spacecraft was coning or tumbling at a rate of about 1 rpm. [1]
Some sources erroneously record Explorer 26 as having decayed from orbit in 1978, a conclusion reached by early decay rate projections. [9] [10] Based on continued satellite tracking data, Explorer 26 was confirmed to have decayed from orbit on 23 August 2021 after over 56 years in orbit. NASA's S-3C scientific satellite, the Energetic Particles Explorer-D, named Explorer 26 after launch was launched on 21 December 1964 into an elliptical 310 x 26200 km x 20.1° orbit and operated for 2.4 years. SATCAT number 00963, it reentered on 23 August 2021 after 56.7 years in space.
Explorer 4 was an American satellite launched on 26 July 1958. It was instrumented by Dr. James van Allen's group. The Department of Defense's Advanced Research Projects Agency (ARPA) had initially planned two satellites for the purposes of studying the Van Allen radiation belts and the effects of nuclear explosions upon these belts, however Explorer 4 was the only such satellite launched as the other, Explorer 5, suffered launch failure.
Explorer 35,, was a spin-stabilized spacecraft built by NASA as part of the Explorer program. It was designed for the study of the interplanetary plasma, magnetic field, energetic particles, and solar X-rays, from lunar orbit.
Explorer 6, or S-2, was a NASA satellite, launched on 7 August 1959, at 14:24:20 GMT. It was a small, spheroidal satellite designed to study trapped radiation of various energies, galactic cosmic rays, geomagnetism, radio propagation in the upper atmosphere, and the flux of micrometeorites. It also tested a scanning device designed for photographing the Earth's cloud cover. On 14 August 1959, Explorer 6 took the first photos of Earth from a satellite.
Explorer 11 was a NASA satellite that carried the first space-borne gamma-ray telescope. This marked the beginning of space gamma-ray astronomy. Launched on 27 April 1961 by a Juno II, the satellite returned data until 17 November 1961, when power supply problems ended the science mission. During the spacecraft's seven-month lifespan it detected twenty-two events from gamma-rays and approximately 22,000 events from cosmic radiation.
Explorer 5 was a United States satellite with a mass of 17.43 kg (38.4 lb). It was the last of the original series of Explorer satellites built, designed, and operated by the Jet Propulsion Laboratory.
Explorer 33, also known as IMP-D and AIMP-1, is a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.
The Solar Anomalous and Magnetospheric Particle Explorer was a NASA solar and magnetospheric observatory, and was the first spacecraft in the Small Explorer program. It was launched into low Earth orbit on 3 July 1992, from Vandenberg Air Force Base aboard a Scout G-1 launch vehicle. SAMPEX was an international collaboration between NASA and the Max Planck Institute for Extraterrestrial Physics of Germany. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) is the first of a series of spacecraft that was launched under the Small Explorer (SMEX) program for low cost spacecraft.
Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.
Explorer 14, also called EPE-B or Energetic Particles Explorer-B, was a NASA spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.
Explorer 12, also called EPE-A or Energetic Particles Explorer-A and as S3), was a NASA satellite built to measure the solar wind, cosmic rays, and the Earth's magnetic field. It was the first of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 16 August 1961, aboard a Thor-Delta launch vehicle. It ceased transmitting on 6 December 1961 due to power failure.
Explorer 28, also called IMP-C, IMP-3 and Interplanetary Monitoring Platform-3, was a NASA satellite launched on 29 May 1965 to study space physics, and was the third spacecraft launched in the Interplanetary Monitoring Platform program. It was powered by chemical batteries and solar panels. There were 7 experiments on board, all devoted to particle studies. Performance was normal until late April 1967, when intermittent problems began. It stayed in contact until 12 May 1967, when contact was lost. The orbit decayed until it re-entered the atmosphere on 4 July 1968. The spacecraft design was similar to its predecessors Explorer 18 (IMP-A), launched in November 1963, and Explorer 21 (IMP-B), launched in October 1964, though this satellite was a few kilograms lighter. The successor Explorer 33 (IMP-D) began the use of a new design.
Explorer 15, also called EPE-C or Energetic Particles Explorer-C, was a NASA satellite launched as part of the Explorer program. Explorer 15 was launched on 27 October 1962, at Cape Canaveral Air Force Station, Florida, United States, with a Thor-Delta A.
Explorer 21, also called IMP-B, IMP-2 and Interplanetary Monitoring Platform-2, was a NASA satellite launched as part of Explorer program. Explorer 21 was launched on 4 October 1964, at 03:45:00 GMT from Cape Canaveral (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 21 was the second satellite of the Interplanetary Monitoring Platform, and used the same general design as its predecessor, Explorer 18 (IMP-A), launched the previous year, in November 1963. The following Explorer 28 (IMP-C), launched in May 1965, also used a similar design.
Explorer 25, was a NASA magnetically aligned satellite launched simultaneously with Explorer 24 (AD-B) using a Scout X-4 launch vehicle. This was NASA's first dual-satellite launch. The satellite's primary mission was to make measurements of the influx of energetic particles into the atmosphere of Earth and to study atmospheric heating and the increase in scale height which have been correlated with geomagnetic activity. Studies of the natural and artificial trapped Van Allen radiation belts were also conducted. A biaxial fluxgate magnetometer was used to monitor the orientation of the spacecraft with respect to the local magnetic field.
Explorer 34, was a NASA satellite launched as part of Explorer program. Explorer 34 as launched on 24 May 1967 from Vandenberg Air Force Base, California, with Thor-Delta E1 launch vehicle. Explorer 34 was the fifth satellite launched as part of the Interplanetary Monitoring Platform program, but was known as "IMP-4" because the preceding launch was more specifically part of the "Anchored IMP" sub-program. The spacecraft was put into space between the launches of Explorer 33 in 1966 and Explorer 35 in July 1967, but the next satellite to use Explorer 34's general design was Explorer 41, which flew in 1969.
Explorer 41, also called as IMP-G and IMP-5, was a NASA satellite launched as part of Explorer program. Explorer 41 as launched on 21 June 1969 on Vandenberg AFB, California, with a Thor-Delta E1 launch vehicle. Explorer 41 was the seventh satellite launched as part of the overall Interplanetary Monitoring Platform series, though it received the post-launch designation "IMP-5" because two previous flights had used the "AIMP" designation instead. It was preceded by the second of those flights, Explorer 35, launched in July 1967. Its predecessor in the strict IMP series of launches was Explorer 34, launched in May 1967, which shared a similar design to Explorer 41. The next launch was of an IMP satellite was Explorer 43 in 1971.
Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.
Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.
Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.
Explorer 50, also known as IMP-J or IMP-8, was a NASA satellite launched to study the magnetosphere. It was the eighth and last in a series of the Interplanetary Monitoring Platform.