Explorer 8

Last updated

Explorer 8
Explorer 8 2.jpg
Explorer 8 satellite
NamesS-30
NASA-S30
Mission type Earth science
Operator NASA
Harvard designation1960 Xi 1
COSPAR ID 1960-014A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 00060
Mission duration54 days (achieved)
Spacecraft properties
SpacecraftExplorer VIII
Spacecraft typeScience Explorer
Bus S-30
Manufacturer Jet Propulsion Laboratory
Launch mass40.88 kg (90.1 lb)
Dimensions76 × 76 cm (30 × 30 in)
Power100 watts
Start of mission
Launch date3 November 1960, 05:23:10 GMT
Rocket Juno II (AM-19D)
Launch site Cape Canaveral, LC-26B
Contractor Army Ballistic Missile Agency
Entered service3 November 1960
End of mission
Last contact27 December 1960
Decay date28 March 2012
Orbital parameters
Reference system Geocentric orbit [1]
Regime Medium Earth orbit
Perigee altitude 416 km (258 mi)
Apogee altitude 2,286 km (1,420 mi)
Inclination 49.9°
Period 112.7 minutes
Instruments
Electric Field Meter
Ion Traps
Langmuir Probe
Micrometeorite Microphone
Micrometeorite Photomultiplier
RF Impedance
Satellite Drag Atmospheric Density
Explorer program
 

Explorer 8 was a NASA research satellite launched on 3 November 1960. [2] It was intended to study the temporal and spatial distribution of the electron density, the electron temperature, the ion concentration, the ion mass, the micrometeorite distribution, and the micrometeorite mass in the ionosphere at altitudes between 400 km (250 mi) and 1,600 km (990 mi) and their variation from full sunlit conditions to full shadow, or nighttime, conditions. [3]

Contents

Spacecraft

Explorer 8 was a 40.88 kg (90.1 lb) mercury-battery-powered satellote. The payload was in the form of two truncated cones with the bases attached to a cylindrical equator. The outer shell was aluminum and had a diameter of 76 cm (30 in) and a height of 76 cm (30 in). The 108.00 MHz transmitter had 100 mW average power, and it functioned for the life of the battery pack (54 days). The data system included telemetry consisting of continuous operation with real-time transmission. To avoid the possibility of effects on the experiments by asymmetrical charging on solar cell surfaces, solar cells were not used. [3]

Experiment

Experiment instrumentation included a radio frequency (RF) impedance probe, an ion current monitor, a retarding potential probe, a two-element and a three-element electron temperature probe, an electron current monitor, a photomultiplier-type and a microphone-type micrometeorite detector, an electric field meter, a solar horizon sensor, and thermistor temperature probes. Simultaneous measurements of electron and ion concentration were used to resolve the question of neutrality of the medium. [3]

Electric Field Meter

A rotating-shutter-type electric field meter was mounted at the forward end of the satellite's spin axis to obtain measurements of the distribution of charges that accumulate on the satellite surface due to interaction of the satellite with the plasma sheath. The meter consisted of an exposed four-blade, motor-driven shutter (rotor), grounded to the satellite skin by brushes, and a four-blade stator, or sensor, located directly behind and having the same configuration as the rotor. The stator, which was connected to ground through a resistive load, was alternately exposed and shielded by the 7500-rpm rotor. Exposed surfaces on the meter were goldplated. Rotor-stator spacing was 3 mm. Because of the experiments large power demand (3 W), it was turned on from the ground. After 2 minutes of operation, the experiment was automatically turned off by a command program module. The total daytime potential difference between the spacecraft and environment was found to be 0.15 V when the medium's electron density was about 1.E4 electrons/cc. At apogee, where electron density was about 1.E3 electrons/cc, the potential reversed and became a few tenths of a volt positive. [4]

Ion Traps

A series of four flush-mounted and electrically insulated planar ion traps with plane parallel grids and collectors was used to measure the total current of incident protons, electrons, other charged particles, and photoelectrons emitted from the collectors. The addition of a single grounded grid and a positively biased collector permitted the measurement of electron current as a function of satellite attitude. The experiment also allowed the grid to be swept from -1.2 to +8 V in order to measure the spacecraft equilibrium potential and the external electron temperature. The addition of a second grid between the grounded outer grid and the collector enabled two three-element probes to measure positive ion and electron currents. One probe, with the inner grid at -15 V, collected incoming positive ions while repelling external electrons and suppressing internal photoelectrons. The second probe, with an inner grid bias at +25 V, measured the incident electron flux and the then unsuppressed photoemission current. Results from this experiment were limited because the decommutation scheme for the satellite was so poor that machine processing was impossible. Some manual recognition of meaningful signal sequences was systematized, and a limited amount of this information formed the total observational data obtained from the experiment. [5]

Langmuir Probe

Two types of electron temperature probes, both simple modifications of the Langmuir probe, were included in the satellite to obtain direct measurement of electron temperature. One type probe operated in two modes. For the first mode, an aperture grid was maintained at spacecraft potential to monitor the orientation sensitivity of electron diffusion current. In the second mode, a varying potential applied to the aperture grid permitted a measurement of satellite potential and of the ambient electron density and temperature. This probe was mounted near the top of the satellite at about 40° to the spin axis (i.e., flush with the upper conical surface of the satellite). A second, identical probe was symmetrically mounted on the other side of the satellite. This second probe consisted of four sensors located on the satellite's equator. These sensors measured various combinations of ion, electron, and photoemission currents. Derived ion and electron densities were then used for comparison with observations from the other satellite sensors. This experiment had a poorer telemetry resolution than the first type of probe, and, hence, the data were not as useful although they were in good agreement with the data from that probe. Because of a number of rather severe solar flares, the only useful data were limited to those taken during 14 quiet days. Another severe limitation to the collection of useful data was the failure of the commutation system to provide information in a machine-sensible form. The useful data obtained had to be manually recognized, extracted from the telemetry, and processed. [6]

Micrometeorite Microphone

Two piezoelectric crystals, each attached to two sounding boards acoustically isolated from the satellite skin, were used to measure the frequency and momentum of micrometeorite impact. Information from these sensors was obtained in low-, medium-, and high-sensitivity levels and stored in three independent digital counters. The experiment performed normally. [7]

Micrometeorite Photomultiplier

A photomultiplier tube, which was made opaque by the evaporation of a coating of aluminum on the front surface, was designed to measure the light energy emitted as a micrometeorite impinged upon the surface and to relate this measured energy to the ambient kinetic energy of the particle. The maximum sensitivity of the sensor to light pulses was of the order of 1.E-14 erg, which means it could detect impacts of particles of 1.E-14 g having a velocity of 20 km/s. The experiment was also intended to determine the erosive effects of micrometeorite impact. As measurable micrometeorites impacted, a portion of the aluminum coating was removed. The photomultiplier then registered the amount of light energy transmitted through the layer from known extraneous light sources. When these data were combined with data on the energy of micrometeorite impacts, the measurement of the erosive effects of a single micrometeorite was obtained. Data from the photomultiplier were received for the life of the battery pack. The light flash detector, however, was also triggered by protons (E>40 MeV), and the data had to be discarded. [8]

RF Impedance

To measure electron concentration in the ionosphere, the change in capacitance of a dipole antenna on the satellite's equator was measured by using the antenna capacitance to control the frequency of an oscillator. A sweep generator started the probe oscillator on an 80-ms up-and-down sweep in frequency. Every time the probe oscillator swept past 6.5 MHz, a signal passed a crystal filter. Two pulses occurred during each 80-ms sweep, but the times the pulses occurred, in relation to the start of the sweep, were modified by the capacitance of the antenna, which was an integral part of the oscillator-tuned circuit. A computer calculated the time intervals and relayed this information to the telemetry system. By this means, the electron density was measured every 40 ms. Considering the satellite's velocity, this experiment was capable of detecting ionospheric inhomogeneities as small as 300 m (980 ft). [9]

Satellite Drag Atmospheric Density

Because of its symmetrical shape, Explorer 8 was selected for use in determining upper atmospheric densities as a function of altitude, latitude, season, and solar activity. This experiment was not planned prior to launch. Density values near perigee were deduced from sequential observations of the spacecraft position, using optical (Baker-Nunn camera network) and radio and/or radar tracking techniques. This experiment resulted in the successful determination of reasonable density values and is capable of yielding long-term atmospheric density values as Explorer 8 had an expected orbital lifetime of 80 years. [10]

Mission

Battery power failed on 27 December 1960. Considerable difficulty was encountered with decommutating the telemetered data to make machine processing possible. As a result of these difficulties, the data were mostly processed by hand. In spite of these difficulties, considerable new knowledge about the ionosphere was gained from operation of the satellite. [3] Explorer 8 decayed from orbit on 28 March 2012. [11]

Display

A replica is on display at the Smithsonian National Air and Space Museum's Steven F. Udvar-Hazy Center in Chantilly, Virginia. [12]

See also

Related Research Articles

Explorer 2 was an American unmanned space mission within the Explorer program. Intended to be a repetition of the previous Explorer 1 mission, which placed a satellite into medium Earth orbit, the spacecraft was unable to reach orbit due to a failure in the launch vehicle during launch.

<span class="mw-page-title-main">Explorer 35</span> NASA satellite of the Explorer program

Explorer 35,, was a spin-stabilized spacecraft built by NASA as part of the Explorer program. Designed for the study of the interplanetary plasma, magnetic field, energetic particles, and solar X-rays, from lunar orbit.

<span class="mw-page-title-main">Explorer 6</span> NASA satellite of the Explorer program

Explorer 6, or S-2, was a NASA satellite, launched on 7 August 1959, at 14:24:20 GMT. It was a small, spheroidal satellite designed to study trapped radiation of various energies, galactic cosmic rays, geomagnetism, radio propagation in the upper atmosphere, and the flux of micrometeorites. It also tested a scanning device designed for photographing the Earth's cloud cover. On 14 August 1959, Explorer 6 took the first photos of Earth from a satellite.

<span class="mw-page-title-main">Explorer 7</span> NASA satellite of the Explorer program

Explorer 7 was a NASA satellite launched on 13 October 1959, at 15:30:04 GMT, by a Juno II launch vehicle from Cape Canaveral Air Force Station (CCAFS) to an orbit of 573 × 1,073 km (356 × 667 mi) and inclination of 50.27°. It was designed to measure solar X-ray and Lyman-alpha flux, trapped energetic particles, and heavy primary cosmic rays. Secondary objectives included collecting data on micrometeoroid penetration, molecular sputtering and studying the Earth-atmosphere heat balance.

<span class="mw-page-title-main">Explorer 32</span> NASA satellite of the Explorer program

Explorer 32, also known as Atmosphere Explorer-B (AE-B), was a NASA satellite launched by the United States to study the Earth's upper atmosphere. It was launched from Cape Canaveral on a Delta C1 launch vehicle, on 25 May 1966. It was the second of five "Atmosphere Explorer", the first being Explorer 17. Though it was placed in a higher-than-expected orbit by a malfunctioning second stage on its launch vehicle, Explorer 32 returned data for ten months before failing due to a sudden depressurization. The satellite reentered the Earth's atmosphere on 22 February 1985.

<span class="mw-page-title-main">Explorer 17</span>

Explorer 17 was a NASA satellite, launched at Cape Canaveral from LC-17B on a Delta B launch vehicle, on 3 April 1963, at 02:00:02 GMT, to study the Earth's upper atmosphere. It was the first satellite of five "Atmosphere Explorer".

<span class="mw-page-title-main">Explorer 33</span> NASA satellite of the Explorer program

Explorer 33, also known as IMP-D and AIMP-1, was a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.

<span class="mw-page-title-main">C/NOFS</span>

C/NOFS, or Communications/Navigation Outage Forecasting System was a USAF satellite developed by the Air Force Research Laboratory (AFRL) Space Vehicles Directorate to investigate and forecast scintillations in the Earth's ionosphere. It was launched by an Orbital Sciences Corporation Pegasus-XL launch vehicle at 17:02:48 UTC on 16 April 2008 and decayed on 28 November 2015.

<span class="mw-page-title-main">Explorer 54</span> NASA satellite of the Explorer program

Explorer 54, also called as AE-D, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 6 October 1975 from Vandenberg Air Force Base board a Thor-Delta 2910 launch vehicle.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Explorer 27</span> NASA satellite of the Explorer program

Explorer 27 was a small NASA satellite, launched in 1965, designed to conduct scientific research in the ionosphere. It was powered by 4 solar panels. One goal of the mission was to study in detail the shape of the Earth by way of investigating variations in its gravitational field. It was the third and last of the Beacons in the Explorers program. The satellite was shut off in July 1973 so that its transmission band could be used by higher-priority spacecraft.

<span class="mw-page-title-main">Explorer 20</span> NASA satellite of the Explorer program

Explorer 20, also known Ionosphere Explorer-A, IE-A, S-48, TOPSI and Topside Explorer, was a NASA satellite launched as part of Explorer program. Its purpose was two-fold: long-term investigation of the ionosphere from above, and in situ investigation of ion concentrations and temperatures.

<span class="mw-page-title-main">Explorer 22</span> NASA satellite of the Explorer program

Explorer 22 was a small NASA ionospheric research satellite launched 9 October 1964, part of NASA's Explorer Program. It was instrumented with an electrostatic probe, four radio beacons for ionospheric research, a passive laser tracking reflector, and two radio beacons for Doppler navigation experiments. Its objective was to provide enhanced geodetic measurements of the Earth as well as data on the total electron content in the Earth's atmosphere and in the satellite's immediate vicinity.

<span class="mw-page-title-main">Explorer 31</span> NASA satellite of the Explorer program

Explorer 31, also called DME-A, was a NASA satellite launched as part of the Explorer program. Explorer 31 was launched on 29 November 1965 from Vandenberg Air Force Base, California, with a Thor-Agena launch vehicle. Explorer 31 was released along with the Canadian satellite Alouette 2.

<span class="mw-page-title-main">Explorer 38</span> NASA satellite of the Explorer program

Explorer 38 was the first NASA satellite to study Radio astronomy. Explorer 38 was launched as part of the Explorer program, being the first of the 2 RAE-satellites. Explorer 38 was launched on 4 July 1968 from Vandenberg Air Force Base, California, with a Delta J launch vehicle.

<span class="mw-page-title-main">Explorer 40</span> NASA satellite of the Explorer program

Explorer 40, was a NASA magnetically aligned satellite launched simultaneously with Explorer 39 (AD-C) using a Scout B launch vehicle.

<span class="mw-page-title-main">Explorer 51</span> NASA satellite of the Explorer program

Explorer 51, also called as AE-C, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 16 December 1973, at 06:18:00 UTC, from Vandenberg board a Delta 1900 launch vehicle.

Explorer 55, also called as AE-E, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 20 November 1975 from Cape Canaveral Air Force Station (CCAFS) board a Thor-Delta 2910 launch vehicle.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

References

  1. McDowell, Jonathan (9 September 2021). "Satellite Catalog". Jonathan's Space Report. Retrieved 3 November 2021.
  2. "Explorers: Searching the Universe Forty Years Later". NASA Fact Sheets. NASA. Archived from the original on 11 May 2008. Retrieved 3 February 2008.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. 1 2 3 4 "Display: Explorer 8 1960-014A". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. "Experiment: Electric Field Meter". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. "Experiment: Ion Traps". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. "Experiment: Langmuir Probe". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. "Experiment: Micrometeorite Microphone". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. "Experiment: Micrometeorite Photomultiplier". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. "Experiment: RF Impedance". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. "Experiment: Satellite Drag Atmospheric Density". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. "Trajectory: Explorer 8 1960-014A". NASA. 28 October 2021. Retrieved 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. "Explorer 8 satellite". Smithsonian National Air and Space Museum. Archived from the original on 4 July 2012.