Mission type |
|
---|---|
Operator | NASA |
COSPAR ID | 2005-001A |
Website | epoxi |
Mission duration | 8 years, 18 days |
Spacecraft properties | |
Spacecraft | Deep Impact |
Manufacturer | JPL · Ball Aerospace · University of Maryland |
Launch mass | 650 kg [1] |
Power | 620.0 W |
Start of mission | |
Entered service | July 21, 2005 (18 years, 6 months and 29 days ago) |
End of mission | |
Last contact | August 8, 2013 (10 years, 6 months and 11 days ago) |
Flyby of Hartley 2 | |
Closest approach | November 4, 2010 ~03:00 UTC (13 years, 3 months and 15 days ago) |
Distance | 694 kilometres (431 mi) |
Official insignia for the re-targeted DIXI mission to Hartley 2 |
EPOXI was a compilation of NASA Discovery program missions led by the University of Maryland and principal investigator Michael A'Hearn, with co-operation from the Jet Propulsion Laboratory and Ball Aerospace. EPOXI uses the Deep Impact spacecraft in a campaign consisting of two missions: the Deep Impact Extended Investigation (DIXI) and Extrasolar Planet Observation and Characterization (EPOCh). DIXI aimed to send the Deep Impact spacecraft on a flyby of another comet, after its primary mission was completed in July 2005, while EPOCh saw the spacecraft's photographic instruments as a space observatory, studying extrasolar planets. [2] [3] [4]
DIXI successfully sent the Deep Impact spacecraft on a flyby of comet Hartley 2 on November 4, 2010, revealing a "hyperactive, small and feisty" comet, after three gravity assists from Earth in December 2007, December 2008 and June 2010. The DIXI mission was not without problems, however; the spacecraft had initially been targeted for a December 5, 2008 flyby of comet Boethin, though, the comet could not be located, and was later declared a lost comet, prompting mission planners to reorganize a flyby of an alternative target, Hartley 2. After its flyby of Hartley 2, the spacecraft was also set to make a close flyby of the Apollo asteroid (163249) 2002 GT in 2020. The mission was suspended altogether, however, after contact with the spacecraft was suddenly lost in August 2013 and attempts to re-establish contact in the month following had failed. [5] Mission scientists theorized that a Y2K-like problem had plagued the spacecraft's software.
The Deep Impact mission was finished with the visit to comet Tempel 1. But the spacecraft still had plenty of maneuvering fuel left, so NASA approved a second mission, called EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation), which included a visit to a second comet (DIXI component) as well as observations of extrasolar planets (EPOCh component). [6]
On July 21, 2005, Deep Impact executed a trajectory correction maneuver that placed the spacecraft on course to fly past Earth on December 31, 2007. The maneuver allowed the spacecraft to use Earth's gravity to begin a new mission in a path towards another comet. In January 2008 Deep Impact began studying the stars with several known extrasolar planets in an attempt to find other such stars nearby. The larger of the spacecraft's two telescopes attempts to find the planets using the transit method. [6]
The initial plan was for a December 5, 2008 flyby of Comet Boethin, with the spacecraft coming within 435 miles (700 km). The spacecraft did not carry a second impactor to collide with the comet and would observe the comet to compare it to various characteristics found on 9P/Tempel. A'Hearn, the Deep Impact team leader reflected on the upcoming project at that time: "We propose to direct the spacecraft for a flyby of Comet Boethin to investigate whether the results found at Comet Tempel 1 are unique or are also found on other comets." [7] He explained that the mission would provide only about half of the information collected during the collision with Tempel 1 but at a fraction of the cost. [7] (EPOXI's low mission cost of $40 million is achieved by reusing the existing Deep Impact spacecraft.) Deep Impact would use its spectrometer to study the comet's surface composition and its telescopes for viewing the surface features. [6]
However, as the Earth gravity assist approached, astronomers were unable to locate Comet Boethin, which is too faint to be observed. Consequently, its orbit could not be calculated with sufficient precision to permit a flyby. Instead, the team decided to send Deep Impact to comet 103P/Hartley requiring an extra two years. NASA approved the additional funding required and retargeted the spacecraft. [8] Mission controllers at the Jet Propulsion Laboratory began redirecting EPOXI on November 1, 2007. They commanded the spacecraft to perform a three-minute rocket burn that changed the spacecraft's velocity. EPOXI's new trajectory set the stage for three Earth flybys, the first on December 31, 2007. This placed the spacecraft into an orbital "holding pattern" so that it could encounter comet 103P/Hartley in 2010.
"It's exciting that we can send the Deep Impact spacecraft on a new mission that combines two totally independent science investigations, both of which can help us better understand how solar systems form and evolve," said in December 2007 Deep Impact leader and University of Maryland astronomer Michael A'Hearn who is principal investigator for both the overall EPOXI mission and its DIXI component. [4]
In June 2009, [9] EPOXI's spectrometer scanned the Moon on its way to Hartley, and discovered traces of "water or hydroxyl", confirming a Moon Mineralogy Mapper observation — a discovery announced in late September, 2009. [10]
Before the 2008 flyby to re-orient for the comet 103P/Hartley encounter, the spacecraft used the High Resolution Instrument, the larger of its two telescopes, to perform photometric observations of previously discovered transiting extrasolar planets from January to August 2008. [11] The goal of photometric observations is to measure the quantity of light, not necessarily resolve an image. An aberration in the primary mirror of the HRI [12] allowed the HRI to spread the light from observations over more pixels without saturating the CCD, effectively obtaining better data. A total of 198,434 images were exposed. [13] EPOCh's goals were to study the physical properties of giant planets and search for rings, moons and planets [14] as small as three Earth masses. [15] It also looked at Earth as though it were an extrasolar planet to provide data that could characterize Earth-type planets for future missions, and it imaged the Earth over 24 hours to capture the Moon passing in front on 2008-05-29. [11]
Star | Constellation | Distance (ly) | Planet |
---|---|---|---|
XO-2 | Lynx | 486 | b |
Gliese 436 | Leo | 33.48 | b |
HAT-P-4 | Boötes | 1010 | b |
GSC 03089-00929 | Hercules | 1300 | TrES-3b |
WASP-3 | Lyra | 727 | b |
GSC 03549-02811 | Draco | 718 | TrES-2b |
HAT-P-7 | Cygnus | 1044 | b |
The spacecraft used Earth's gravity for the second gravity assist in December 2008 and made two distant flybys of Earth in June and December 2009. On May 30, 2010 it successfully fired its engines for an 11.3 second trajectory correction maneuver, for a velocity change (Δv) of 0.1 meters per second (0.22 mph), in preparation for the third Earth flyby on June 27. Observations of 103P/Hartley began on September 5 and ended November 25, 2010. [16] For a diagram of the EPOXI solar orbits see here.
The mission's closest approach to 103P/Hartley occurred at 10 am EDT on 4 November 2010, passing to within 694 kilometers (431 mi) of this small comet. The flyby speed was 12.3 km/s. The spacecraft employed the same suite of three science instruments—two telescopes and an infrared spectrometer—that the Deep Impact spacecraft used during its prime mission to guide an impactor into comet Tempel 1 in July 2005 and observe the results. [17]
Early results of the observations show that the comet is powered by dry ice, not water vapor as was previously thought. The images were clear enough for scientists to link jets of dust and gas with specific surface features. [17]
"When comet Boethin could not be located, we went to our backup, which is every bit as interesting but about two years farther down the road," said Tom Duxbury, EPOXI project manager at NASA's Jet Propulsion Laboratory in Pasadena, California. "Hartley 2 is scientifically just as interesting as comet Boethin because both have relatively small, active nuclei," said Michael A'Hearn, principal investigator for EPOXI at the University of Maryland, College Park. [3]
In November 2010, EPOXI was used to make some test-training deep sky observations, using the MRI camera that is optimised for cometary imagery. Images were made of the Dumbbell Nebula (M27), the Veil Nebula (NGC6960) and the Whirlpool Galaxy (M51a). [18]
Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is currently carried out mainly by astronomers with telescopes, its physical exploration is conducted both by uncrewed robotic space probes and human spaceflight. Space exploration, like its classical form astronomy, is one of the main sources for space science.
A lander is a spacecraft that descends towards, then comes to rest on the surface of an astronomical body other than Earth. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.
Stardust was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis. It was the first sample return mission of its kind. En route to Comet Wild 2, it also flew by and studied the asteroid 5535 Annefrank. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.
MESSENGER was a NASA robotic space probe that orbited the planet Mercury between 2011 and 2015, studying Mercury's chemical composition, geology, and magnetic field. The name is a backronym for "Mercury Surface, Space Environment, Geochemistry, and Ranging", and a reference to the messenger god Mercury from Roman mythology.
The Discovery Program is a series of Solar System exploration missions funded by the U.S. National Aeronautics and Space Administration (NASA) through its Planetary Missions Program Office. The cost of each mission is capped at a lower level than missions from NASA's New Frontiers or Flagship Programs. As a result, Discovery missions tend to be more focused on a specific scientific goal rather than serving a general purpose.
Deep Impact was a NASA space probe launched from Cape Canaveral Air Force Station on January 12, 2005. It was designed to study the interior composition of the comet Tempel 1 (9P/Tempel), by releasing an impactor into the comet. At 05:52 UTC on July 4, 2005, the Impactor successfully collided with the comet's nucleus. The impact excavated debris from the interior of the nucleus, forming an impact crater. Photographs taken by the spacecraft showed the comet to be more dusty and less icy than had been expected. The impact generated an unexpectedly large and bright dust cloud, obscuring the view of the impact crater.
Tempel 1 is a periodic Jupiter-family comet discovered by Wilhelm Tempel in 1867. It completes an orbit of the Sun every 5.6 years. Tempel 1 was the target of the Deep Impact space mission, which photographed a deliberate high-speed impact upon the comet in 2005. It was re-visited by the Stardust spacecraft on February 14, 2011, and came back to perihelion in August 2016. On 26 May 2024, it will make a modest approach of 0.55 AU to Jupiter which will lift the perihelion distance and 9P will next come to perihelion on 12 February 2028 when it will be 1.77 AU from the Sun.
Suisei, originally known as Planet-A, was an uncrewed space probe developed by the Institute of Space and Astronautical Science.
Comet Boethin was a periodic Jupiter-family comet discovered in 1975 by Leo Boethin. It appeared again in January 1986 as expected. Although the comet was next expected at perihelion in April 1997, no observations were reported, and the comet is thought to have disintegrated. It has not been observed since March 1986. The comet might have come to perihelion in late July 2020, but the uncertainty in the comet's position is hundreds of millions of km. The old orbit would have the comet next coming to perihelion around November 2031.
The exploration of Jupiter has been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2023, has continued with eight further spacecraft missions in the vicinity of Jupiter. All of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all but two were flybys taking detailed observations without landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer Solar System have used Jupiter flybys. On 5 July 2016, spacecraft Juno arrived and entered the planet's orbit—the second craft ever to do so. Sending a craft to Jupiter is difficult, mostly due to large fuel requirements and the effects of the planet's harsh radiation environment.
Michael Francis A'Hearn was an American astronomer and astronomy professor at the University of Maryland College of Computer, Mathematical, and Natural Sciences. He was also the principal investigator for NASA's EPOXI mission.
A planetary flyby is the act of sending a space probe past a planet or a dwarf planet close enough to record scientific data. This is a subset of the overall concept of a flyby in spaceflight.
Comet Hartley 2, designated as 103P/Hartley by the Minor Planet Center, is a small periodic comet with an orbital period of 6.48 years. It was discovered by Malcolm Hartley in 1986 at the Schmidt Telescope Unit, Siding Spring Observatory, Australia. Its diameter is estimated to be 1.2 to 1.6 kilometres.
Discovery and exploration of the Solar System is observation, visitation, and increase in knowledge and understanding of Earth's "cosmic neighborhood". This includes the Sun, Earth and the Moon, the major planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune, their satellites, as well as smaller bodies including comets, asteroids, and dust.
Malcolm Hartley is an English-born astronomer and a discoverer of minor planets and comets, who works with the UK Schmidt Telescope at the Siding Spring Observatory in Australia.
(163249) 2002 GT is an Apollo asteroid with an absolute magnitude of 18.26. It is a potentially hazardous asteroid as its orbit crosses that of Earth.
A Mars flyby is a movement of spacecraft passing in the vicinity of the planet Mars, but not entering orbit or landing on it. Uncrewed space probes have used this method to collect data on Mars, as opposed to orbiting or landing. A spacecraft designed for a flyby is also known as a "flyby bus" or "flyby spacecraft".
A flyby is a spaceflight operation in which a spacecraft passes in proximity to another body, usually a target of its space exploration mission and/or a source of a gravity assist to impel it towards another target. Spacecraft which are specifically designed for this purpose are known as flyby spacecraft, although the term has also been used in regard to asteroid flybys of Earth for example. Important parameters are the time and distance of closest approach.
External image | |
---|---|
Deep Impact trajectory |