New Mexico Exoplanet Spectroscopic Survey Instrument

Last updated
New Mexico Exoplanet Spectroscopic Survey Instrument
Magdalena Observatory.JPG
The 2.4 meter Telescope at Magdalena Ridge Observatory
Survey type astronomical survey, astronomical instrument  OOjs UI icon edit-ltr-progressive.svg
Target exoplanet   OOjs UI icon edit-ltr-progressive.svg
Website nmnasaepscor.com/nm-exoplanet-survey/

The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) is a ground-based near-infrared spectrographic system specifically designed to study the atmospheres of exoplanets. [1] [2] [3] The NESSI instrument was mounted in 2014 on a 2.4 meter telescope at the Magdalena Ridge Observatory in Socorro County, New Mexico, USA, [4] achieving first light on 7 April 2014. [5]

Contents

Overview

NESSI, a $3.5 million instrument, is the first purpose-built device for the analysis of exoplanet atmospheres, [4] and is expected to have a powerful impact on the field of exoplanet characterization. [6] The Principal Investigator is Michelle Creech-Eakman at the New Mexico Institute of Mining and Technology, working with seven co-investigators [6] from New Mexico Tech, Magdalena Ridge Observatory, and NASA JPL. It is partly funded by NASA's Experimental Program to Stimulate Competitive Research, in partnership with the New Mexico Institute of Mining and Technology. [2]

The NESSI spectroscope was mounted on the institute's 2.4 meter telescope at the Magdalena Ridge Observatory in Socorro County, New Mexico, USA, [4] and its first exoplanet observations began on April 7, 2014. In 2016 a contract was established with JPL to retrofit NESSI with new foreoptics and a mounting collar for use on the Hale Telescope at the Palomar Observatory. NESSI achieved first light on the Hale Telescope in Feb, 2018 and was undertaking a series of observations to establish its sensitivity and precision for exoplanet spectroscopy.

NESSI will capture the spectra of both the star and the planet during the transit and then allow scientists to deduct the composition of the planet's atmosphere. The novel technology is expected to achieve high definition readings by using algorithms to calibrate and compensate for time-variable telluric features and instrumental variability throughout an observation. [6]

Scientific goals

NESSI will be able to detect and study a wide range of wavelengths in the near-infrared region of the light spectrum. NESSI will be used to study about 100 exoplanets, ranging from massive 'super-Earths' to gas giants. It uses a technique called transit spectroscopy, in which a planet is observed as it crosses in front of, then behind, its parent star. The observed light is beamed through a spectrometer that breaks it apart, ultimately revealing chemicals that make up the planet's atmosphere. [2] NESSI is expected to devote about 50 nights per year for surveying exoplanets via infrared spectroscopy. [6]

See also

Related Research Articles

Infrared astronomy

Infrared astronomy is astronomical observation of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 micrometers. Infrared falls in between visible radiation, which ranges from 380 to 750 nanometers, and submillimeter waves.

Very Large Telescope Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is a telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT consists of four individual telescopes, each with a primary mirror 8.2 m across, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal, and Yepun, which are all words for astronomical objects in the Mapuche language. The telescopes form an array which is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.

Spitzer Space Telescope Infrared space telescope

The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), is a retired infrared space telescope launched in 2003 and retired on 30 January 2020.

Near Infrared Camera and Multi-Object Spectrometer

The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a scientific instrument for infrared astronomy, installed on the Hubble Space Telescope (HST), operating from 1997 to 1999, and from 2002 to 2008. Images produced by NICMOS contain data from the near-infrared part of the light spectrum.

Coronagraph

A coronagraph is a telescopic attachment designed to block out the direct light from a star so that nearby objects – which otherwise would be hidden in the star's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN).

Magdalena Ridge Observatory American astronomical observatory

The Magdalena Ridge Observatory (MRO) is an astronomical observatory in Socorro County, New Mexico, about 32 kilometers (20 mi) west of the town of Socorro. The observatory is located in the Magdalena Mountains near the summit of South Baldy Mountain, adjacent to the Langmuir Laboratory for Atmospheric Research. Currently operational at the site is a 2.4-meter fast-tracking optical telescope, and under construction is a ten-element optical interferometer.

HR 8799 Star in the constellation Pegasus

HR 8799 is a roughly 30 million-year-old main-sequence star located 133.3 light-years away from Earth in the constellation of Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets. Those planets, along with Fomalhaut b, were the first exoplanets whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star.

51 Pegasi b

51 Pegasi b, unofficially dubbed Bellerophon, later formally named Dimidium, is an extrasolar planet approximately 50 light-years away in the constellation of Pegasus. It was the first exoplanet to be discovered orbiting a main-sequence star, the Sun-like 51 Pegasi, and marked a breakthrough in astronomical research. It is the prototype for a class of planets called hot Jupiters.

The Exoplanet Characterisation Observatory (EChO) was a proposed space telescope as part of the Cosmic Vision roadmap of the European Space Agency, and competed with four other missions for the M3 slot in the programme. On 19 February 2014 the PLATO mission was selected in place of the other candidates in the programme, including EChO.

Fast Infrared Exoplanet Spectroscopy Survey Explorer

Fast Infrared Exoplanet Spectroscopy Survey Explorer (FINESSE) was a NASA mission proposal for a space observatory operating in the Near-infrared spectrum for the Medium-Class Explorers program. The Principal Investigator was Mark Swain of the Jet Propulsion Laboratory in Pasadena, California.

Spectro-Polarimetric High-Contrast Exoplanet Research

Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT-SPHERE) is an adaptive optics system and coronagraphic facility at the Very Large Telescope (VLT). It provides direct imaging as well as spectroscopic and polarimetric characterization of exoplanet systems. The instrument operates in the visible and near infrared, achieving, albeit over a limited field of view, superior image quality and contrast for bright targets.

Large Ultraviolet Optical Infrared Surveyor Proposed space telescope in NASAs program of large strategic science missions

The Large Ultraviolet Optical Infrared Surveyor, commonly known as LUVOIR, is a multi-wavelength space telescope concept being developed by NASA under the leadership of a Science and Technology Definition Team. It is one of four large astrophysics space mission concepts being studied in preparation for the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey. While LUVOIR is a concept for a general-purpose observatory, it has the key science goal of characterizing a wide range of exoplanets, including those that might be habitable. An additional goal is to enable a broad range of astrophysics, from the reionization epoch, through galaxy formation and evolution, to star and planet formation. Powerful imaging and spectroscopy observations of Solar System bodies would also be possible. LUVOIR would be a Large Strategic Science Mission and will be considered for a development start sometime after 2020. The LUVOIR Study Team has produced designs for two variants of LUVOIR: one with a 15.1 m diameter telescope mirror (LUVOIR-A) and one with an 8 m diameter mirror (LUVOIR-B). LUVOIR can observe ultraviolet, visible, and near-infrared wavelengths of light. The Final Report on the 5-year LUVOIR mission concept study was publicly released on 26 August 2019.

Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph

Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph (FGS-NIRISS) is an instrument for the planned James Webb Space Telescope that combines a Fine Guidance Sensor and a science instrument, a near-infrared imager and a spectrograph. The FGS/NIRISS is being built by the Canadian Space Agency as part of the international project to build a large infrared space telescope with the United States and various European states. FGS-NIRISS observes light from the wavelengths of 0.8 to 5.0 microns. The instrument has four different observing modes. Physically the FGS and NIRISS are combined, but optically they are separate with the FGS being used by the telescope to point it, whereas NIRISS is an independent science instrument. The spectroscopic mode is capable of doing exoplanet spectroscopy. The detector for NIRISS is a 2048 × 2048 pixel mercury cadmium telluride (HgCdTe) array, where each pixel is 18 microns on a side according to the STSCi. The field of view is 2.2' × 2.2' which gives a plate scale of about 0.065 arcsec/pixel.

The Habitable Exoplanet Imaging Mission (HabEx) is a space telescope concept that would be optimized to search for and image Earth-size habitable exoplanets in the habitable zones of their stars, where liquid water can exist. HabEx would aim to understand how common terrestrial worlds beyond the Solar System may be and the range of their characteristics. It would be an optical, UV and infrared telescope that would also use spectrographs to study planetary atmospheres and eclipse starlight with either an internal coronagraph or an external starshade.

Origins Space Telescope Proposed UV space observatory to characterize exoplanets atmospheres

Origins Space Telescope (Origins) is a concept study for a Far-Infrared Surveyor space telescope mission. A preliminary concept in pre-formulation, it was presented to the United States Decadal Survey in 2019 for a possible selection to NASA's large strategic science missions. Origins would provide an array of new tools for studying star formation and the energetics and physical state of the interstellar medium within the Milky Way using infrared radiation and new spectroscopic capabilities.

ARIEL European optical space observatory studying known exoplanets; medium-class mission in the ESA Science Programme

The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL), is a space telescope planned for launch in 2029 as the fourth medium-class mission of the European Space Agency's Cosmic Vision programme. The mission is aimed at observing at least 1000 known exoplanets using the transit method, studying and characterising the planets' chemical composition and thermal structures. Compared to the James Webb Space Telescope, ARIEL will have more observing time available for planet characterisation but a much smaller telescope and it will be launched almost a decade later.

Contribution to ARIEL Spectroscopy of Exoplanets (CASE) is a detector subsystem contribution to an infrared spectrometer instrument for the planned European ARIEL space telescope. It is being developed by NASA as a contribution to the European Space Agency (ESA) project to add scientific capabilities to the space telescope to observe the chemical composition of the atmospheres of exoplanets, as well exoplanetary metallicities. The ARIEL spacecraft with CASE on board is planned to launch in 2029.

SPHEREx

SPHEREx is a future near-infrared space observatory that will perform an all-sky survey to measure the near-infrared spectra of approximately 450 million galaxies. In February 2019, SPHEREx was selected by NASA for its next Medium-Class Explorers mission, beating out two competing mission concepts: Arcus and FINESSE. As of January 2021, SPHEREx is targeted to launch no earlier than 17 June 2024 on a Falcon 9 launch vehicle from Vandenberg Space Force Base. The principal investigator is James Bock at California Institute of Technology (Caltech) in Pasadena, California.

Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution

The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission aims to find environments beyond Earth’s solar system that might host planets with thick atmospheres to support life.

References

  1. Landau, Elizabeth; Cofield, Calla (23 January 2020). "NESSI Emerges as New Tool for Exoplanet Atmospheres". NASA . Retrieved 23 January 2020.
  2. 1 2 3 Whitney, Clavin (17 April 2014). "Exoplanets Soon to Gleam in the Eye of NESSI". NASA . California: Jet Propulsion Laboratory . Retrieved 2014-04-21.
  3. "NESSI - New Mexico Exoplanet Spectroscopic Survey Instrument". New Mexico Institute of Mining and Technology. April 2014. Archived from the original on 2014-04-21. Retrieved 2014-04-21.
  4. 1 2 3 Martin, Bob (4 April 2014). "NM Tech Exoplanet Search: Is Earth Alone?". QRKE. Retrieved 2014-04-21.
  5. "New Exoplanet Instrument Achieves First Light!". New Mexico Tech. April 7, 2014. Retrieved 2016-04-20.
  6. 1 2 3 4 NESSI - Proposed Research (PDF). New Mexico Space Grant. 2008. Archived from the original (PDF) on 2014-04-22.