Astronomical survey

Last updated
Composite image of the GOODS-South field, result of a deep survey using two of the four giant 8.2-metre telescopes composing ESO's Very Large Telescope GOODS-South field.jpg
Composite image of the GOODS-South field, result of a deep survey using two of the four giant 8.2-metre telescopes composing ESO's Very Large Telescope
Gamma-ray pulsars detected by the Fermi Gamma-ray Space Telescope Fermi's Gamma-ray Pulsars.jpg
Gamma-ray pulsars detected by the Fermi Gamma-ray Space Telescope

An astronomical survey is a general map or image of a region of the sky (or of the whole sky) that lacks a specific observational target. Alternatively, an astronomical survey may comprise a set of images, spectra, or other observations of objects that share a common type or feature. Surveys are often restricted to one band of the electromagnetic spectrum due to instrumental limitations, although multiwavelength surveys can be made by using multiple detectors, each sensitive to a different bandwidth. [1]


Surveys have generally been performed as part of the production of an astronomical catalog. They may also search for transient astronomical events. They often use wide-field astrographs.

Scientific value

Sky surveys, unlike targeted observation of a specific object, allow astronomers to catalog celestial objects and perform statistical analyses on them without complex corrections for selection effects. In some cases, an astronomer interested in a particular object will find that survey images are sufficient to make new telescope time entirely unnecessary.

Surveys also help astronomers choose targets for closer study using larger, more powerful telescopes. If previous observations support a hypothesis, a telescope scheduling committee is more likely to approve new, more detailed observations to test it.

The wide scope of surveys makes them ideal for finding foreground objects that move, such as asteroids and comets. An astronomer can compare existing survey images to current observations to identify changes; this task can even be performed automatically using image analysis software. Besides science, these surveys also detect potentially hazardous objects. Similarly, images of the same object taken by different surveys can be compared to detect transient astronomical events such as variable stars. [2]

List of sky surveys

Spectrum of types of observations of Solar System objects. Uncertain size-frequency distribution of interstellar visitors.jpg
Spectrum of types of observations of Solar System objects.
The positions in space of just some of the galaxies identified by the VIPERS survey (see Visible Multi Object Spectrograph). A large slice of the Universe.jpg
The positions in space of just some of the galaxies identified by the VIPERS survey (see Visible Multi Object Spectrograph).

Surveys of the Magellanic Clouds

See also

Related Research Articles

<span class="mw-page-title-main">Very Large Telescope</span> Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is a telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each with a primary mirror 8.2 m across, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal, and Yepun, which are all words for astronomical objects in the Mapuche language. The telescopes form an array complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.

<span class="mw-page-title-main">European Southern Observatory</span> Intergovernmental organization and observatory in Chile

The European Organisation for Astronomical Research in the Southern Hemisphere, commonly referred to as the European Southern Observatory (ESO), is an intergovernmental research organisation made up of 16 member states for ground-based astronomy. Created in 1962, ESO has provided astronomers with state-of-the-art research facilities and access to the southern sky. The organisation employs about 730 staff members and receives annual member state contributions of approximately €162 million. Its observatories are located in northern Chile.

<span class="mw-page-title-main">Hubble Deep Field</span> Multiple exposure image of deep space in the constellation Ursa Major

The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the whole sky, which is equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and 28, 1995.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">Australian Astronomical Observatory</span> Observatory

The Australian Astronomical Observatory (AAO), formerly the Anglo-Australian Observatory, was an optical and near-infrared astronomy observatory with its headquarters in North Ryde in suburban Sydney, Australia. Originally funded jointly by the United Kingdom and Australian governments, it was managed wholly by Australia's Department of Industry, Innovation, Science, Research and Tertiary Education. The AAO operated the 3.9-metre Anglo-Australian Telescope (AAT) and 1.2-metre UK Schmidt Telescope (UKST) at Siding Spring Observatory, located near the town of Coonabarabran, Australia.

Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.

<span class="mw-page-title-main">VISTA (telescope)</span>

The VISTA is a wide-field reflecting telescope with a 4.1 metre mirror, located at the Paranal Observatory in Chile. It is operated by the European Southern Observatory and started science operations in December 2009. VISTA was conceived and developed by a consortium of universities in the United Kingdom led by Queen Mary University of London and became an in-kind contribution to ESO as part of the UK's accession agreement, with the subscription paid by the UK Science and Technology Facilities Council (STFC).

The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 and was named after the Alfred P. Sloan Foundation, which contributed significant funding.

<span class="mw-page-title-main">Redshift survey</span>

In astronomy, a redshift survey is a survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the redshift can be used to estimate the distance of an object from Earth. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure detailed statistical properties of the large-scale structure of the universe. In conjunction with observations of early structure in the cosmic microwave background, these results can place strong constraints on cosmological parameters such as the average matter density and the Hubble constant.

<span class="mw-page-title-main">Multi-unit spectroscopic explorer</span> Integral field spectrograph installed at the Very Large Telescope

The multi-unit spectroscopic explorer (MUSE) is an integral field spectrograph installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). It operates in the visible wavelength range, and combines a wide field of view with a fine spatial sampling and a large simultaneous spectral range. It is designed to take advantage of the improved spatial resolution provided by adaptive optics. MUSE had first light on the VLT on 31 January 2014.

<span class="mw-page-title-main">Hubble Deep Field South</span>

The Hubble Deep Field South is a composite of several hundred individual images taken using the Hubble Space Telescope's Wide Field and Planetary Camera 2 over 10 days in September and October 1998. It followed the great success of the original Hubble Deep Field in facilitating the study of extremely distant galaxies in early stages of their evolution. While the WFPC2 took very deep optical images, nearby fields were simultaneously imaged by the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS).

The Deep Lens Survey is an ultra-deep multi-band optical survey of seven 4 square degree fields. Mosaic CCD imagers at the National Optical Astronomy Observatory's Blanco and Mayall telescopes are being used. The deep fields took five years to complete (2001–2006), in four bands: B, V, R, and z', to 29/29/29/28 mag per square arcsecond surface brightness. Optical transient events and supernova candidates are released in real time.

<span class="mw-page-title-main">Great Observatories Origins Deep Survey</span> Astronomical survey that combines observations from 3 great NASA observatories

The Great Observatories Origins Deep Survey, or GOODS, is an astronomical survey combining deep observations from three of NASA's Great Observatories: the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory, along with data from other space-based telescopes, such as XMM Newton, and some of the world's most powerful ground-based telescopes.

<span class="mw-page-title-main">GRB 090423</span> Gamma-ray burst detected in 2009

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009 at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, which makes it one of the most distant objects detected to date with a spectroscopic redshift.

Integral field spectrographs (IFS) combine spectrographic and imaging capabilities in the optical or infrared wavelength domains to get from a single exposure spatially resolved spectra in a bi-dimensional region. Developed at first for the study of astronomical objects, this technique is now also used in many other fields, such bio-medical science and Earth remote sensing, usually under the name of snapshot hyperspectral imaging.

The Palomar Transient Factory, was an astronomical survey using a wide-field survey camera designed to search for optical transient and variable sources such as variable stars, supernovae, asteroids and comets. The project completed commissioning in summer 2009, and continued until December 2012. It has since been succeeded by the Intermediate Palomar Transient Factory (iPTF), which itself transitioned to the Zwicky Transient Facility in 2017/18. All three surveys are registered at the MPC under the same observatory code for their astrometric observations.

<span class="mw-page-title-main">Euclid (spacecraft)</span> European infrared space observatory

Euclid is a visible to near-infrared space telescope currently under development by the European Space Agency (ESA) and the Euclid Consortium. The objective of the Euclid mission is to better understand dark energy and dark matter by accurately measuring the acceleration of the universe. To achieve this, the Korsch-type telescope will measure the shapes of galaxies at varying distances from Earth and investigate the relationship between distance and redshift. Dark energy is generally accepted as contributing to the increased acceleration of the expanding universe, so understanding this relationship will help to refine how physicists and astrophysicists understand it. Euclid's mission advances and complements ESA's Planck telescope. The mission is named after the ancient Greek mathematician Euclid.

Time-domain astronomy is the study of how astronomical objects change with time. Though the study may be said to begin with Galileo's Letters on Sunspots, the term now refers especially to variable objects beyond the Solar System. This may be due to movement or changes in the object itself. Common targets included are supernovae, pulsating stars, novas, flare stars, blazars and active galactic nuclei. Visible light time domain studies include OGLE, HAT-South, PanSTARRS, SkyMapper, ASAS, WASP, CRTS, and in a near future the LSST at the Vera C. Rubin Observatory.

<span class="mw-page-title-main">Visible Multi Object Spectrograph</span> Wide field imager and multi-object spectrograph at the VLT in Chile

The Visible Multi-Object Spectrograph (VIMOS) is a wide field imager and a multi-object spectrograph installed at the European Southern Observatory's Very Large Telescope (VLT), in Chile. The instrument used for deep astronomical surveys delivers visible images and spectra of up to 1,000 galaxies at a time. VIMOS images four rectangular areas of the sky, 7 by 8 arcminutes each, with gaps of 2 arcminutes between them. Its principal investigator was Olivier Le Fèvre.


  1. See, for example, Lacy, M., Riley, J. M., Waldram, E. M., McMahon, R. G., & Warner, P. J. (1995). "A radio-optical survey of the North Ecliptic CAP". Monthly Notices of the Royal Astronomical Society. 276 (2): 614–626. Bibcode:1995MNRAS.276..614L. doi: 10.1093/mnras/276.2.614 .{{cite journal}}: CS1 maint: uses authors parameter (link)
  2. Gay, Dr. Pamela; Cain, Fraser (26 May 2008). "Episode #90: The Scientific Method". Astronomy Cast (Podcast). Retrieved 16 Dec 2009.
  3. "3D Map of Distant Galaxies Completed – VLT survey shows distribution in space of 90 000 galaxies". Retrieved 16 December 2016.
  4. Risinger, Nick. "Phototopic Sky Survey" . Retrieved 12 May 2011.
  5. Associated Press (12 May 2011). "Amateur Photographer Links 37,000 Pics in Night-Sky Panorama". Fox News. Retrieved 13 May 2011.
  6. "WiggleZ Dark Energy Survey | Home". Retrieved 2014-03-03.
  7. "". Retrieved 2014-03-03.
  8. "SLUGGS survey webpage".
  9. "LAMOST survey webpage".
  10. "The Birth of Monsters" . Retrieved 14 December 2015.
  11. "The VLA FIRST Survey". 2008-07-21. Retrieved 2014-03-03.
  12. Mauch, T.; Murphy, T.; Buttery, H. J.; Curran, J.; Hunstead, R. W.; Piestrzynski, B.; Robertson, J. G.; Sadler, E. M. (2003). "SUMSS: a wide-field radio imaging survey of the southern sky - II. The source catalogue". Monthly Notices of the Royal Astronomical Society. 342 (4): 1117–1130. arXiv: astro-ph/0303188 . Bibcode:2003MNRAS.342.1117M. doi:10.1046/j.1365-8711.2003.06605.x. S2CID   13173524.
  13. "The GALEX Arecibo SDSS Survey". Retrieved 2014-03-03.
  15. Driver, Simon P.; Norberg, Peder; Baldry, Ivan K.; Bamford, Steven P.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Peacock, John A.; Hill, D. T.; Kelvin, L. S.; Robotham, A. S. G.; Cross, N. J. G.; Parkinson, H. R.; Prescott, M.; Conselice, C. J.; Dunne, L.; Brough, S.; Jones, H.; Sharp, R. G.; Van Kampen, E.; Oliver, S.; Roseboom, I. G.; Bland-Hawthorn, J.; Croom, S. M.; Ellis, S.; Cameron, E.; Cole, S.; Frenk, C. S.; Couch, W. J.; et al. (2009). "GAMA: towards a physical understanding of galaxy formation". Astronomy & Geophysics . 50 (5): 5.12. arXiv: 0910.5123 . Bibcode:2009A&G....50e..12D. doi:10.1111/j.1468-4004.2009.50512.x. S2CID   119214918.
  16. "Atlas3D Survey". Retrieved 2014-03-03.