Visible Multi Object Spectrograph

Last updated

VIMOS attached to VLT's Melipal (UT3) Vimos-VLT.jpg
VIMOS attached to VLT's Melipal (UT3)

The Visible Multi-Object Spectrograph (VIMOS) is a wide field imager and a multi-object spectrograph installed at the European Southern Observatory's Very Large Telescope (VLT), in Chile. The instrument used for deep astronomical surveys delivers visible images and spectra of up to 1,000 galaxies at a time. [1] [2] VIMOS images four rectangular areas of the sky, 7 by 8 arcminutes each, with gaps of 2 arcminutes between them. [1] Its principal investigator was Olivier Le Fèvre.

Contents

The Franco-Italian instrument operates in the visible part of the spectrum from 360 to 1000 nanometers (nm). In the conceptual design phase, the multi-object spectrograph then called VIRMOS included an additional instrument, NIMOS, operating in the near-infrared spectrum of 1100–1800 nm. [3]

Operating in the three different observation modes, direct imaging, multi-slit spectroscopy, and integral field spectroscopy, the main objective of the instrument is to study the early universe through massive redshift surveys, such as the VIMOS-VLT Deep Survey. [4]

VIMOS saw its first light on 26 February 2002, and has since been mounted on the Nasmyth B focus of VLT's Melipal unit telescope (UT3). [5] [6]

It was retired in 2018 to make space for the return of CRIRES+. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Very Large Telescope</span> Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is a facility operated by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each equipped with a primary mirror that measures 8.2 meters in diameter. These optical telescopes, named Antu, Kueyen, Melipal, and Yepun, are generally used separately but can be combined to achieve a very high angular resolution. The VLT array is also complemented by four movable Auxiliary Telescopes (ATs) with 1.8-meter apertures.

<span class="mw-page-title-main">European Southern Observatory</span> Intergovernmental organization and observatory in Chile

The European Organisation for Astronomical Research in the Southern Hemisphere, commonly referred to as the European Southern Observatory (ESO), is an intergovernmental research organisation made up of 16 member states for ground-based astronomy. Created in 1962, ESO has provided astronomers with state-of-the-art research facilities and access to the southern sky. The organisation employs over 750 staff members and receives annual member state contributions of approximately €162 million. Its observatories are located in northern Chile.

<span class="mw-page-title-main">W. M. Keck Observatory</span> Astronomical observatory in Hawaii

The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and when completed in 1993 and 1996 were the largest optical reflecting telescopes in the world. They are currently the 3rd and 4th largest.

<span class="mw-page-title-main">Hubble Deep Field</span> Multiple exposure image of deep space in the constellation Ursa Major

The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the whole sky, which is equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and 28, 1995.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">VLT Survey Telescope</span> Telescope in the Atacama Desert, Chile

The VLT Survey Telescope (VST) is a telescope located at ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed in an enclosure immediately adjacent to the four Very Large Telescope (VLT) Unit Telescopes on the summit of Cerro Paranal. The VST is a wide-field survey telescope with a field of view twice as broad as the full Moon. It is the largest telescope in the world designed to exclusively survey the sky in visible light.

<span class="mw-page-title-main">VISTA (telescope)</span>

The VISTA is a wide-field reflecting telescope with a 4.1 metre mirror, located at the Paranal Observatory in Chile. It is operated by the European Southern Observatory and started science operations in December 2009. VISTA was conceived and developed by a consortium of universities in the United Kingdom led by Queen Mary University of London and became an in-kind contribution to ESO as part of the UK's accession agreement, with the subscription paid by the UK Science and Technology Facilities Council (STFC).

<span class="mw-page-title-main">New Technology Telescope</span>

The New Technology Telescope or NTT is a 3.58-metre Ritchey–Chrétien telescope operated by the European Southern Observatory. It began operations in 1989. It is located in Chile at the La Silla Observatory and was an early pioneer in the use of active optics. The telescope and its enclosure were built to a revolutionary design for optimal image quality.

<span class="mw-page-title-main">Hobby–Eberly Telescope</span> 10-meter aperture telescope in Texas, USA

The Hobby–Eberly Telescope (HET) is a 10-meter (30-foot) aperture telescope located at the McDonald Observatory in Davis Mountains, Texas.

<span class="mw-page-title-main">Multi-unit spectroscopic explorer</span> Integral field spectrograph installed at the Very Large Telescope

The Multi-Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). It operates in the visible wavelength range, and combines a wide field of view with a high spatial resolution and a large simultaneous spectral range. It is specifically designed to take advantage of the improved spatial resolution provided by adaptive optics, offering diffraction-limited performance in specific configurations. MUSE had first light on the VLT’s Unit Telescope 4 (UT4) on 31 January 2014.

<span class="mw-page-title-main">Extremely Large Telescope</span> Major astronomical facility in Chile

The Extremely Large Telescope (ELT) is an astronomical observatory under construction. When completed, it will be the world's largest optical/near-infrared extremely large telescope. Part of the European Southern Observatory (ESO) agency, it is located on top of Cerro Armazones in the Atacama Desert of northern Chile.

<span class="mw-page-title-main">Atacama Pathfinder Experiment</span> Radio telescope in the Atacama desert, northern Chile

The Atacama Pathfinder Experiment (APEX) is a radio telescope 5,064 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert in northern Chile, 50 km east of San Pedro de Atacama built and operated by 3 European research institutes. The main dish has a diameter of 12 m and consists of 264 aluminium panels with an average surface accuracy of 17 micrometres (rms). The telescope was officially inaugurated on September 25, 2005.

<span class="mw-page-title-main">Multi-Object Spectrometer</span> Method in astronomy

A multi-object spectrometer is a type of optical spectrometer capable of simultaneously acquiring the spectra of multiple separate objects in its field of view. It is used in astronomical spectroscopy and is related to long-slit spectroscopy. This technique became available in the 1980s.

<span class="mw-page-title-main">Cosmic Origins Spectrograph</span> Instrument installed on the Hubble Space Telescope

The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.

<span class="mw-page-title-main">Wide Field Camera 3</span> Astronomical camera on the Hubble Space Telescope

The Wide Field Camera 3 (WFC3) is the Hubble Space Telescope's last and most technologically advanced instrument to take images in the visible spectrum. It was installed as a replacement for the Wide Field and Planetary Camera 2 during the first spacewalk of Space Shuttle mission STS-125 on May 14, 2009.

<span class="mw-page-title-main">NGC 1350</span> Spiral galaxy in the constellation Fornax

NGC 1350 is a spiral galaxy located 87 million light years away in the southern constellation Fornax.

<span class="mw-page-title-main">Chandra Deep Field South</span>

The Chandra Deep Field South (CDF-S) is an image taken by the Chandra X-ray Observatory satellite. The location was chosen because, like the Lockman Hole, it is a relatively clear "window" through the ubiquitous clouds of neutral hydrogen gas in the Milky Way galaxy, which allows observers to clearly see the rest of the universe in X-rays. The image is centered on RA 3h 32m 28.0s DEC −27° 48′ 30″ (J2000.0), covering 0.11 square degrees, measuring 16 arcminutes across. This patch of sky lies in the Fornax constellation.

<span class="mw-page-title-main">Integral field spectrograph</span> Spectrograph equipped with an integral field unit

Integral field spectrographs (IFS) combine spectrographic and imaging capabilities in the optical or infrared wavelength domains (0.32 μm – 24 μm) to get from a single exposure spatially resolved spectra in a bi-dimensional region. The name originates from the fact that the mesurements result from integrating the light on multiple sub-regions of the field. Developed at first for the study of astronomical objects, this technique is now also used in many other fields, such bio-medical science and Earth remote sensing. Integral field spectrography is part of the broader category of snapshot hyperspectral imaging techniques, itself a part of hyperspectral imaging.

<span class="mw-page-title-main">K-band multi-object spectrograph</span>

The K-band multi-object spectrograph, or KMOS for short, is an instrument mounted on ESO’s Very Large Telescope Antu (UT1) at the Paranal Observatory in Chile. KMOS is a multi-object spectrograph able to observe 24 objects at the same time in infrared light and to map out how their properties vary from place to place. It will provide crucial data to help understand how galaxies grew and evolved in the early Universe.

<span class="mw-page-title-main">Hyperion proto-supercluster</span> Galaxy cluster in the constellation Sextans

The Hyperion proto-supercluster is the largest and earliest known proto-supercluster, 5,000 times the mass of the Milky Way and seen at 20% of the current age of the universe. It was discovered in 2018 by analysing the redshifts of 10,000 objects observed with the Very Large Telescope in Chile.

References

  1. 1 2 "VIMOS – Visible Multi Object Spectrograph (Summary)". ESO. 19 December 2013. Retrieved 2 August 2015.
  2. "VIMOS – General Description (Overview)". ESO. 23 March 2013. Retrieved 2 August 2015.
  3. "VIMOS and NIRMOS: Status Report" (PDF). ESO. March 1998.
  4. "New Light on Dark Energy—Probing the cosmic Web of the Universe". ESO (eso0804, Science Release). 30 January 2008.
  5. "VIMOS—Visible Multi-Object Spectrograph". ESO. Retrieved 2 August 2015.
  6. "VIMOS—a Cosmology Machine for the VLT. Successful Test Observations With Powerful New Instrument at Paranal". ESO (eso0209, Science Release). 13 March 2002.
  7. "Paranal – decommissioned instruments" . Retrieved 21 July 2021.
  8. Largest Galaxy Proto-Supercluster Found - Astronomers using ESO's Very Large Telescope uncover a cosmic titan lurking in the early Universe, European Southern Observatory (ESO), 17 October 2018, Science Release eso1833, retrieved 19 October 2018