Sub-Earth

Last updated
Comparing the size of Earth, Mars, and exoplanets of Kepler-20 and Kepler-42. Comparing the size of Earth, Mars, and exoplanets of Kepler-20 and Kepler-42.jpg
Comparing the size of Earth, Mars, and exoplanets of Kepler-20 and Kepler-42.

A sub-Earth is a planet "substantially less massive" than Earth and Venus. [1] In the Solar System, this category includes Mercury and Mars. Sub-Earth exoplanets are among the most difficult type to detect because their small sizes and masses produce the weakest signal. Despite the difficulty, one of the first exoplanets found was a sub-Earth around a millisecond pulsar PSR B1257+12. The smallest known is WD 1145+017 b with a size of 0.15 Earth radii, or somewhat smaller than Pluto. However, WD 1145+017 b is not massive enough to qualify as a sub-Earth classical planet and is instead defined as a minor, or dwarf, planet. [2] It is orbiting within a thick cloud of dust and gas as chunks of itself continually break off to then spiral in towards the star, and within around 5,000 years it will have more-or-less disintegrated. [3]

The Kepler space telescope opened up a new realm of sub-Earth discoveries. On January 10, 2012, Kepler discovered the first three sub-Earths around an ordinary star, Kepler-42. As of June 2014, Kepler has 45 confirmed planets that are smaller than Earth, with 17 of them being smaller than 0.8 R. In addition, there are over 310 planet candidates with an estimated radius of <1 R, with 135 of them being smaller than 0.8 R. [1] [4]

There is suspected to be a sub-Earth orbiting Proxima Centauri, the closest star to the Sun. [5] The mass of Proxima d is believed to be between that of Mars and Venus. [6]

Sub-Earths commonly lack substantial atmospheres because of their low gravity and weak magnetic fields, allowing stellar radiation to wear away their atmospheres. [1] Due to their small sizes, and unless there are significant tidal forces when orbiting close to the parent star, sub-Earths also have short periods of geologic activity.

Related Research Articles

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

<span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 December 2023, there are 5,550 confirmed exoplanets in 4,089 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

<span class="mw-page-title-main">Habitability of K-type main-sequence star systems</span> Overview of the habitability of K-type main-sequence star systems

K-type main-sequence stars, also known as orange dwarfs, may be candidates for supporting extraterrestrial life. These stars are known as "Goldilocks stars" as they emit enough radiation in the non-UV ray spectrum to provide a temperature that allows liquid water to exist on the surface of a planet; they also remain stable in the main sequence longer than the Sun by burning their hydrogen slower, allowing more time for life to form on a planet around a K-type main-sequence star. The planet's habitable zone, ranging from 0.1–0.4 to 0.3–1.3 astronomical units (AU), depending on the size of the star, is often far enough from the star so as not to be tidally locked to the star, and to have a sufficiently low solar flare activity not to be lethal to life. In comparison, red dwarf stars have too much solar activity and quickly tidally lock the planets in their habitable zones, making them less suitable for life. The odds of complex life arising may be better on planets around K-type main-sequence stars than around Sun-like stars, given the suitable temperature and extra time available for it to evolve. Some planets around K-type main-sequence stars are potential candidates for extraterrestrial life.

Kepler-444 is a triple star system, estimated to be 11.2 billion years old, approximately 119 light-years (36 pc) away from Earth in the constellation Lyra. On 27 January 2015, the Kepler spacecraft is reported to have confirmed the detection of five sub-Earth-sized rocky exoplanets orbiting the main star. The star is a K-type main sequence star. All of the planets are far too close to their star to harbour life forms.

WD 1145+017 is a white dwarf approximately 570 light-years (170 pc) from Earth in the constellation of Virgo. It is the first white dwarf to be observed with a transiting planetary-mass object orbiting it.

Kepler-186e is a confirmed exoplanet orbiting the red dwarf star Kepler-186, approximately 582 light years away from Earth in the constellation of Cygnus. It is near the optimistic habitable zone but probably not in it, possibly making it have a runaway greenhouse effect, like Venus. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Four additional planets orbiting the star were also discovered.

<span class="mw-page-title-main">Kepler-1520b</span> Exoplanet orbiting the star Kepler 1520

Kepler-1520b, is a confirmed exoplanet orbiting the K-type main sequence star Kepler-1520. It is located about 2,020 light-years away from Earth in the constellation of Cygnus. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. The planet was previously proposed in 2012 when reports of its host star recorded drops in its luminosity varying from 0.2% to 1.3%, which indicated a possible planetary companion rapidly disintegrating. In 2015, the planetary nature of the cause of the dips was finally verified. It is expected to disintegrate in about 40–400 million years.

<span class="mw-page-title-main">Proxima Centauri b</span> Terrestrial planet orbiting Proxima Centauri

Proxima Centauri b, sometimes referred to as Alpha Centauri Cb, is an exoplanet orbiting within the habitable zone of the red dwarf star Proxima Centauri, which is the closest star to the Sun and part of the larger triple star system Alpha Centauri. It is about 4.2 ly (1.3 pc) from Earth in the constellation Centaurus, making it and Proxima d, along with the currently-disputed Proxima c, the closest known exoplanets to the Solar System.

<span class="mw-page-title-main">WD 1145+017 b</span> Exoplanetary object orbiting around WD 1145+017

WD 1145+017 b, is a confirmed exoplanetary object, likely rocky, orbiting around and being vaporized by the white dwarf star WD 1145+017. It was discovered by NASA's Kepler spacecraft on its "Second Light" mission. It is located about 570 light-years away from Earth in the constellation of Virgo. The object was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

<span class="mw-page-title-main">Disrupted planet</span> Planet or related being destroyed by a passing object

In astronomy, a disrupted planet is a planet or exoplanet or, perhaps on a somewhat smaller scale, a planetary-mass object, planetesimal, moon, exomoon or asteroid that has been disrupted or destroyed by a nearby or passing astronomical body or object such as a star. Necroplanetology is the related study of such a process.

TOI-700 is a red dwarf 101.4 light-years away from Earth located in the Dorado constellation that hosts TOI-700 d, the first Earth-sized exoplanet in the habitable zone discovered by the Transiting Exoplanet Survey Satellite (TESS).

<span class="mw-page-title-main">TOI-700 d</span> Goldilocks terrestrial planet orbiting TOI-700

TOI-700 d is a near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf TOI-700, the outermost planet within the system. It is located roughly 101.4 light-years (31.1 pc) away from Earth in the constellation of Dorado. The exoplanet is the first Earth-sized exoplanet in the habitable zone discovered by the Transiting Exoplanet Survey Satellite (TESS).

<span class="mw-page-title-main">Kepler-1649c</span> Earth-size exoplanet orbiting Kepler-1649

Kepler-1649c is an Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star Kepler-1649, the outermost planet of the planetary system discovered by Kepler’s space telescope. It is located about 301 light-years (92 pc) away from Earth, in the constellation of Cygnus.

<span class="mw-page-title-main">WD 1856+534</span> White dwarf located in the constellation Draco

WD 1856+534 is a white dwarf located in the constellation of Draco. At a distance of about 25 parsecs (80 ly) from Earth, it is the outer component of a visual triple star system consisting of an inner pair of red dwarf stars. The white dwarf displays a featureless absorption spectrum, lacking strong optical absorption or emission features in its atmosphere. It has an effective temperature of 4,700 K, corresponding to an age of approximately 5.8 billion years. WD 1856+534 is approximately half as massive as the Sun, while its radius is much smaller, being 40% larger than Earth.

<span class="mw-page-title-main">Proxima Centauri d</span> Sub-Earth candidate orbiting Proxima Centauri

Proxima Centauri d is an exoplanet orbiting the red dwarf star Proxima Centauri, the closest star to the Sun and part of the Alpha Centauri triple star system. Together with two other planets in the Proxima Centauri system, it is the closest known exoplanet to the Solar System, located approximately 4.2 light-years away in the constellation of Centaurus. The first signs of the exoplanet emerged as a weak 5.15-day signal in radial velocity data taken from the Very Large Telescope during a 2020 study on Proxima b's mass. This signal was formally proposed to be a candidate exoplanet by Faria et al. in a follow-up paper published in February 2022.

References

  1. 1 2 3 Sinukoff, E.; Fulton, B.; Scuderi, L.; Gaidos, E. (2013-08-28). "Below One Earth Mass: The Detection, Formation, and Properties of Subterrestrial Worlds". Space Science Reviews. 180 (1–4): 71–99. arXiv: 1308.6308 . Bibcode:2013SSRv..180...71S. doi:10.1007/s11214-013-0019-1. S2CID   255071638.
  2. Vanderburg, Andrew; John Asher Johnson; Rappaport, Saul; Bieryla, Allyson; et al. (2015). "A disintegrating minor planet transiting a white dwarf". Nature. 526 (7574): 546–549. arXiv: 1510.06387 . Bibcode:2015Natur.526..546V. doi:10.1038/nature15527. PMID   26490620. S2CID   4451207.
  3. Rappaport, S.; Gary, B. L.; Kaye, T.; Vanderburg, A.; Croll, B.; Benni, P.; Foote, J. (June 2016). "Drifting asteroid fragments around WD 1145+017". Monthly Notices of the Royal Astronomical Society. 458 (4): 3904–3917. arXiv: 1602.00740 . doi:10.1093/mnras/stw612.
  4. NASA Exoplanet Archive
  5. Extrasolar Planets Encyclopaedia
  6. Faria, J. P.; Suárez Mascareño, A.; Figueira, P.; Silva, A.M.; et al. (February 2022). "A candidate short-period sub-Earth orbiting Proxima Centauri". Astronomy and Astrophysics. 658: A115. arXiv: 2202.05188 . doi: 10.1051/0004-6361/202142337 .