List of interstellar and circumstellar molecules

Last updated

Infrared spectrum of HH 46/47 (image in inset), with vibrational bands of several molecules labelled in colour Ssc2003-06g.jpg
Infrared spectrum of HH 46/47 (image in inset), with vibrational bands of several molecules labelled in colour

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.

Contents

Background

Idealised example of the rotational spectrum (bottom) produced by transitions between different rotational energy levels (top) of a simple linear molecule.
B
{\displaystyle B}
is the rotational constant of the molecule,
J
{\displaystyle J}
is the rotational quantum number,
J
'
{\displaystyle J'}
is the upper level and
J
''
{\displaystyle J''}
is the lower level. Rotational spectrum example.png
Idealised example of the rotational spectrum (bottom) produced by transitions between different rotational energy levels (top) of a simple linear molecule. is the rotational constant of the molecule, is the rotational quantum number, is the upper level and is the lower level.

The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultraviolet, optical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths. [1]

Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopy changes both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches. [2]

The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect. [3] Interactions between the atomic nuclei and the electrons sometimes cause further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.

Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937, through its strong electronic transition at 4300 angstroms (in the optical). [4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s. [3]

The inventory of detected molecules is highly biased towards certain types which are easier to detect. For example, radio astronomy is most sensitive to small linear molecules with a high molecular dipole. [3] The most common molecule in the Universe, H2 (molecular hydrogen), is completely invisible to radio telescopes because it has no dipole; [3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket. [5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, the vibrational lines of polycyclic aromatic hydrocarbons (PAHs) were identified in 1984, [6] showing the class of molecules is very common in space, [7] but it took until 2021 to identify any specific PAHs through their rotational lines. [8] [9]

The carbon star CW Leonis. The visible shells of circumstellar material were ejected by the central star over thousands of years. CW Leonis - HST - Heic2112a.jpg
The carbon star CW Leonis. The visible shells of circumstellar material were ejected by the central star over thousands of years.

One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there. [10] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified. [11] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.

The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry. [12] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistry on cosmic dust, radiative transfer including interstellar extinction, and sophisticated reaction networks. [13] The use of molecular lines to determine the physical properties of astronomical objects is known as molecular astrophysics.

Molecules

The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass units. Deuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.

Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4. [14] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds. [14]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds. Carbon-monoxide-3D-vdW.png
Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.

Diatomic (43)

The H
3 cation is one of the most abundant ions in the universe. It was first detected in 1993. Trihydrogen-cation-3D-vdW.png
The H
3
cation is one of the most abundant ions in the universe. It was first detected in 1993.

Triatomic (44)

Formaldehyde is an organic molecule that is widely distributed in the interstellar medium. Formaldehyde-3D-vdW.png
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.

Four atoms (30)

Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System. Methane-3D-space-filling.svg
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.

Five atoms (20)

In the ISM, formamide (above) can combine with methylene to form acetamide. Formamide-3D-vdW.png
In the ISM, formamide (above) can combine with methylene to form acetamide.

Six atoms (16)

Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space. Acetaldehyde-3D-vdW.png
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.

Seven atoms (13)

The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997. Acetic-acid-3D-vdW.png
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.

Eight atoms (14)

Nine atoms (10)

Diacetylene-3D-vdW-B.png
Methyldiacetylene-3D-vdW.png
Cyanooctatetrayne-3D-vdW.png
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (23)

Deuterated molecules (22)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

Unconfirmed (15)

Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections either are described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

See also

Related Research Articles

<span class="mw-page-title-main">R Horologii</span> Variable star in the constellation Horologium

R Horologii is a red giant star approximately 760 light-years away in the southern constellation of Horologium. It is a Mira variable with a period of 404.83 days, ranging from apparent magnitude 4.7 to 14.3—one of the largest ranges in brightness known of stars in the night sky visible to the unaided eye. The star is losing mass at the rate of 5.9×10−7 M·y−1.

<span class="mw-page-title-main">CW Leonis</span> Carbon star in the constellation Leo

CW Leonis or IRC +10216 is a variable carbon star that is embedded in a thick dust envelope. It was first discovered in 1969 by a group of astronomers led by Eric Becklin, based upon infrared observations made with the 62-inch Caltech Infrared Telescope at Mount Wilson Observatory. Its energy is emitted mostly at infrared wavelengths. At a wavelength of 5 μm, it was found to have the highest flux of any object outside the Solar System.

HD 114762 b is a small red dwarf star, in the HD 114762 system, formerly thought to be a massive gaseous extrasolar planet, approximately 126 light-years (38.6 pc) away in the constellation of Coma Berenices. This optically undetected companion to the late F-type main-sequence star HD 114762 was discovered in 1989 by Latham, et al., and confirmed in an October 1991 paper by Cochran, et al. It was thought to be the first discovered exoplanet

<span class="mw-page-title-main">T Cephei</span> Star in the constellation Cepheus

T Cephei is a Mira variable star in the constellation Cepheus. Located approximately 600 light-years distant, it varies between magnitudes 5.2 and 11.3 over a period of around 388 days.

Propynylidyne is a chemical compound that has been identified in interstellar space.

<span class="mw-page-title-main">DP Leonis</span> Star system in the constellation Leo

DP Leonis is a binary star system in the equatorial constellation of Leo. It is a variable star that ranges in apparent visual magnitude from 17.5 down to 19. The system is located at a distance of approximately 990 light-years from the Sun based on parallax. It is a cataclysmic variable star of the AM Herculis-type also known as polars. The system comprises an eclipsing white dwarf and red dwarf in tight orbit and an extrasolar planet. This eclipsing variable was discovered by P. Biermann and associates in 1982 as the optical counterpart to the EINSTEIN X-ray source E1114+182.

<span class="mw-page-title-main">U Hydrae</span> Variable star in the constellation Hydra

U Hydrae is a single star in the equatorial constellation of Hydra, near the northern constellation border with Sextans. It is a semiregular variable star of sub-type SRb, with its brightness ranging from visual magnitude (V) 4.7 to 5.2 over a 450-day period, with some irregularity. This object is located at a distance of approximately 680 light years from the Sun based on parallax. It is drifting closer with a radial velocity of −26 km/s.

<span class="mw-page-title-main">HD 165634</span> Star in the constellation Sagittarius

HD 165634 is a star in the southern constellation of Sagittarius. It has a yellow hue and is faintly visible to the naked eye with apparent visual magnitude of 4.56. The star is located at a distance of approximately 339 light years from the Sun based on parallax, but is drifting closer with a radial velocity of −5 km/s. It has an absolute magnitude of −0.53.

69 Virginis is a single star in the zodiac constellation of Virgo, located about 259 light years away. It is visible to the naked eye as a faint orange-hued star with an apparent visual magnitude of 4.76, although it is a suspected variable that may range in magnitude from 4.75 down to 4.79. This object is moving closer to the Earth with a heliocentric radial velocity of −13 km/s. The light from this star is polarized due to intervening interstellar dust.

<span class="mw-page-title-main">GJ 1151</span> Red dwarf star

GJ 1151 is a star located in the northern circumpolar constellation of Ursa Major at a distance of 26.2 light-years from the Sun. It has a reddish hue and is too faint to be visible to the naked eye with an apparent visual magnitude of 14.0 The star is moving closer with a radial velocity of −36 km/s, and has a relatively large proper motion, traversing the celestial sphere at a rate of 1.815″·yr−1.

<span class="mw-page-title-main">VHS J1256–1257</span> Low-mass triple star system in the constellation Corvus

VHS J125601.92–125723.9 is a young triple brown dwarf system located in the constellation Corvus approximately 69.0 light-years from the Sun. The system consists of the equal-mass binary VHS J1256–1257AB and the distant planetary-mass companion VHS 1256–1257 b. In 2022, a continuous radio emission from the radiation belts surrounding VHS J1256–1257 was detected.

Tricarbon monosulfide (C3S) or tricarbon sulfur is a reactive molecular substance that has been detected in outer space. Tricarbon monosulfide is a heterocumulene or thiocumulene, consisting of a straight chain of three carbon atoms and a terminal sulfur atom.

<span class="mw-page-title-main">Circumplanetary disk</span> Accumulation of matter around a planet

A circumplanetary disk is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids or collision fragments in orbit around a planet. They are reservoirs of material out of which moons may form. Such a disk can manifest itself in various ways.

<span class="mw-page-title-main">HD 73882</span> Eclipsing binary system in constellation Vela

HD 73882 is a visual binary system with the components separated by 0.6″ and a combined spectral class of O8. One of stars is an eclipsing binary system. The period of variability is listed as both 2.9199 days and 20.6 days, possibly due to the secondary being a spectroscopic binary star.

<span class="mw-page-title-main">EX Lupi</span>

EX Lupi is a young, single T-Tauri star in the southern constellation of Lupus. An irregular variable, it is the prototype of young, low-mass eruptive stars named EXors, with EX Lupi being this object's variable star designation. At its minimal activity level, EX Lupi resembles a classical T-Tauri star of the M0 dwarf type. The low latitude of this star, at a declination of −40°, makes it difficult for northern observers to view. Based on parallax measurements, it is located at a distance of about 505 light years from the Sun. The star lies next to a gap in the Lupus cloud complex, a star forming region.

HD 210056, also known as HR 8432, is a solitary orange hued star located in the southern circumpolar constellation Octans. Eggen (1993) listed it as a member of the old disk population.

<span class="mw-page-title-main">HD 196737</span> K-type giant; Microscopium

HD 196737, also designated as HR 7893, is a solitary orange hued star located in the southern constellation Microscopium. It has an apparent magnitude of 5.47, allowing it to be faintly visible to the naked eye. The object is located relatively close at a distance of 241 light years based on Gaia DR3 parallax measurements, but is receding with a heliocentric radial velocity of 14.2 km/s. At its current distance, HD 196737's brightness is diminished by 0.14 magnitudes due to interstellar dust. It has an absolute magnitude of 1.17.

References

  1. Shu, Frank H. (1982). The Physical Universe: An Introduction to Astronomy. University Science Books. ISBN   978-0-935702-05-7. Archived from the original on 2010-04-01.
  2. Chaffee, Frederick H.; Lutz, Barry L.; Black, John H.; Vanden Bout, Paul A.; Snell, Ronald L. (1980). "Rotational fine-structure lines of interstellar C2 toward Zeta Persei". The Astrophysical Journal. 236: 474. Bibcode:1980ApJ...236..474C. doi:10.1086/157764.
  3. 1 2 3 4 McGuire, Brett A. (2018). "2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules". The Astrophysical Journal Supplement Series. 239 (2): 17. arXiv: 1809.09132 . Bibcode:2018ApJS..239...17M. doi: 10.3847/1538-4365/aae5d2 . S2CID   119522774.
  4. Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, retrieved 2007-02-13
  5. 1 2 Carruthers, George R. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal, 161: L81–L85, Bibcode:1970ApJ...161L..81C, doi: 10.1086/180575
  6. Leger, A.; Puget, J. L. (1984). "Identification of the "unidentified" IR emission features of interstellar dust ?". Astronomy and Astrophysics. 137: L5. Bibcode:1984A&A...137L...5L.
  7. Tielens, A.G.G.M. (2008). "Interstellar Polycyclic Aromatic Hydrocarbon Molecules". Annual Review of Astronomy and Astrophysics. 46: 289–337. Bibcode:2008ARA&A..46..289T. doi:10.1146/annurev.astro.46.060407.145211.
  8. 1 2 3 McGuire, Brett A.; et al. (19 March 2021). "Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering". Science. 371 (6535): 1265–1269. arXiv: 2103.09984 . Bibcode:2021Sci...371.1265M. doi:10.1126/science.abb7535. PMID   33737489. S2CID   232269920.
  9. 1 2 Burkhardt, Andrew M.; et al. (1 June 2021). "Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1". The Astrophysical Journal Letters. 913 (2): L18. arXiv: 2104.15117 . Bibcode:2021ApJ...913L..18B. doi: 10.3847/2041-8213/abfd3a . S2CID   233476519.
  10. Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series, 60: 819–878, Bibcode:1986ApJS...60..819C, doi:10.1086/191102
  11. Kaler, James B. (2002). The hundred greatest stars. Copernicus Series. Springer. ISBN   978-0-387-95436-3 . Retrieved 2011-05-09.[ better source needed ]
  12. Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN   978-0-7503-0310-1
  13. Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences, 103 (33): 12269–12273, Bibcode:2006PNAS..10312269D, doi: 10.1073/pnas.0602117103 , PMC   1567869 , PMID   16894166
  14. 1 2 Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry, 62: 173–184, Bibcode:2011ARPC...62..173K, doi:10.1146/annurev-physchem-032210-103332, PMID   21128763
  15. The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, retrieved 2007-02-16
  16. 1 2 3 Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics, 183 (1): L10–L12, Bibcode:1987A&A...183L..10C
  17. Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal, 433 (2): 729–732, Bibcode:1994ApJ...433..729Z, doi:10.1086/174682
  18. Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal, 694 (1): L59–L63, Bibcode:2009ApJ...694L..59T, doi: 10.1088/0004-637X/694/1/L59
  19. Barlow, M. J.; et al. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science , 342 (6164): 1343–1345, arXiv: 1312.4843 , Bibcode:2013Sci...342.1343B, doi:10.1126/science.1243582, PMID   24337290, S2CID   37578581
  20. Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space". New York Times . Retrieved 13 December 2013.
  21. Souza, S. P; Lutz, B. L (1977). "Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/". The Astrophysical Journal. 216: L49. Bibcode:1977ApJ...216L..49S. doi:10.1086/182507.
  22. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal, 438: 740–749, Bibcode:1995ApJ...438..740L, doi:10.1086/175119
  23. Neufeld, D. A.; et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics, 454 (2): L37–L40, arXiv: astro-ph/0603201 , Bibcode:2006A&A...454L..37N, doi:10.1051/0004-6361:200600015, S2CID   119471648
  24. Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight". NASA . Retrieved 13 October 2016.
  25. 1 2 Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal, 93: 11–23, Bibcode:1941ApJ....93...11A, doi:10.1086/144237
  26. 1 2 3 4 5 6 Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London, 324 (1578): 257–273, Bibcode:1988RSPTA.324..257S, doi:10.1098/rsta.1988.0016, S2CID   120128881
  27. 1 2 3 4 5 6 7 Fuente, A.; et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal, 619 (2): L155–L158, arXiv: astro-ph/0412361 , Bibcode:2005ApJ...619L.155F, doi:10.1086/427990, S2CID   14004275
  28. 1 2 Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics, 230: L9–L11, Bibcode:1990A&A...230L...9G
  29. 1 2 3 Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN   978-3-540-43362-0
  30. Agúndez, M.; et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion", Astronomy & Astrophysics, 517: L2, arXiv: 1007.0662 , Bibcode:2010A&A...517L...2A, doi:10.1051/0004-6361/201015186, S2CID   67782707 , retrieved 2010-09-03
  31. Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". LA Times . Retrieved March 9, 2014.
  32. Dent, W.R.F.; et al. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science . 343 (6178): 1490–1492. arXiv: 1404.1380 . Bibcode:2014Sci...343.1490D. doi:10.1126/science.1248726. PMID   24603151. S2CID   206553853.
  33. Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters, 419: L97, Bibcode:1993ApJ...419L..97L, doi:10.1086/187146
  34. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ziurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences, 103 (33): 12274–12279, Bibcode:2006PNAS..10312274Z, doi: 10.1073/pnas.0602277103 , PMC   1567870 , PMID   16894164
  35. Furuya, R. S.; et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics, 409 (2): L21–L24, Bibcode:2003A&A...409L..21F, doi: 10.1051/0004-6361:20031304
  36. Fisher, Christine (17 April 2019). "NASA finally found evidence of the universe's earliest molecule - The elusive helium hydride was found 3,000 light-years away". Engadget . Retrieved 17 April 2018.
  37. Güsten, Rolf; et al. (17 April 2019). "Astrophysical detection of the helium hydride ion HeH+". Nature . 568 (7752): 357–359. arXiv: 1904.09581 . Bibcode:2019Natur.568..357G. doi:10.1038/s41586-019-1090-x. PMID   30996316. S2CID   119548024.
  38. Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1" (PDF), Astrophysical Journal, Part 1, 295: 501–506, Bibcode:1985ApJ...295..501B, doi:10.1086/163394
  39. De Luca, M.; et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters, 751 (2): L37, Bibcode:2012ApJ...751L..37D, doi:10.1088/2041-8205/751/2/L37, S2CID   123355062
  40. Neufeld, David A.; et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters, 488 (2): L141–L144, arXiv: astro-ph/9708013 , Bibcode:1997ApJ...488L.141N, doi:10.1086/310942, S2CID   14166201
  41. Wyrowski, F.; et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics, 518: A26, arXiv: 1004.2627 , Bibcode:2010A&A...518A..26W, doi:10.1051/0004-6361/201014364, S2CID   119265403
  42. Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters, 376: L49–L52, Bibcode:1991ApJ...376L..49M, doi: 10.1086/186100
  43. Wagenblast, R.; et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society, 260 (2): 420–424, Bibcode:1993MNRAS.260..420W, doi: 10.1093/mnras/260.2.420
  44. "Astronomers Detect Molecular Nitrogen Outside Solar System". Space Daily. June 9, 2004. Retrieved 2010-06-25.[ better source needed ]
  45. Knauth, D. C; et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature, 429 (6992): 636–638, Bibcode:2004Natur.429..636K, doi:10.1038/nature02614, PMID   15190346, S2CID   4302582
  46. McGonagle, D.; et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1, 359 (1 Pt 1): 121–124, Bibcode:1990ApJ...359..121M, doi:10.1086/169040, PMID   11538685
  47. Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space, Physorg.com, retrieved 2007-04-02[ better source needed ]
  48. Turner, B. E.; Bally, John (1987). "Detection of interstellar PN - the first identified phosphorus compound in the interstellar medium". The Astrophysical Journal. 321: L75. Bibcode:1987ApJ...321L..75T. doi: 10.1086/185009 .
  49. Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters, 321 (1 Pt 2): L81–L85, Bibcode:1987ApJ...321L..81Z, doi:10.1086/185010, PMID   11542218
  50. Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters, 666 (1): L29–L32, Bibcode:2007ApJ...666L..29T, doi: 10.1086/521361 , S2CID   121424802
  51. Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal, 528 (1): L33–L36, arXiv: astro-ph/9911080 , Bibcode:2000ApJ...528L..33Y, doi:10.1086/312420, PMID   10587489, S2CID   32928458
  52. Menten, K. M.; et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl", Astronomy & Astrophysics, 525: A77, arXiv: 1009.2825 , Bibcode:2011A&A...525A..77M, doi:10.1051/0004-6361/201014363, S2CID   119281811.
  53. 1 2 3 Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science, 226 (1): 149–163, Bibcode:1995Ap&SS.226..149P, doi:10.1007/BF00626907, S2CID   121702812
  54. Turner, B. E. (1992). "Detection of SiN in IRC + 10216". The Astrophysical Journal. 388: L35. Bibcode:1992ApJ...388L..35T. doi:10.1086/186324.
  55. 1 2 Kamiński, T.; et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics, 551: A113, arXiv: 1301.4344 , Bibcode:2013A&A...551A.113K, doi:10.1051/0004-6361/201220290, S2CID   59038056
  56. 1 2 Oka, Takeshi (2006), "Interstellar H3+", Proceedings of the National Academy of Sciences, 103 (33): 12235–12242, Bibcode:2006PNAS..10312235O, doi: 10.1073/pnas.0601242103 , PMC   1567864 , PMID   16894171
  57. 1 2 Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature, 384 (6607): 334–335, Bibcode:1996Natur.384..334G, doi:10.1038/384334a0, PMID   8934516, S2CID   4370842
  58. Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal, 712 (1): L93–L97, Bibcode:2010ApJ...712L..93T, doi: 10.1088/2041-8205/712/1/L93
  59. Hinkle, K. W; Keady, J. J; Bernath, P. F (1988). "Detection of C3 in the Circumstellar Shell of IRC+10216". Science. 241 (4871): 1319–22. Bibcode:1988Sci...241.1319H. doi:10.1126/science.241.4871.1319. PMID   17828935. S2CID   40349500.
  60. Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A (2001). "Detection of C3 in Diffuse Interstellar Clouds". The Astrophysical Journal. 553 (1): 267–273. arXiv: astro-ph/0102449 . Bibcode:2001ApJ...553..267M. doi:10.1086/320668. S2CID   14404584.
  61. Anderson, J. K.; et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal, 795 (1): L1, Bibcode:2014ApJ...795L...1A, doi:10.1088/2041-8205/795/1/L1, S2CID   94778638
  62. Ohishi, Masatoshi, Masatoshi; et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters, 380: L39–L42, Bibcode:1991ApJ...380L..39O, doi: 10.1086/186168 , PMID   11538087
  63. 1 2 3 4 Irvine, William M.; et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications, 26: 167–180, Bibcode:1988ApL&C..26..167I, PMID   11538461
  64. Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal, 677 (2): L101–L104, Bibcode:2008ApJ...677L.101H, doi: 10.1086/588024
  65. Whittet, Douglas C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society, 252: 63–67, Bibcode:1991MNRAS.252...63W, doi: 10.1093/mnras/252.1.63
  66. Cernicharo, J.; Velilla-Prieto, L.; Agúndez, M.; Pardo, J. R.; Fonfría, J. P.; Quintana-Lacaci, G.; Cabezas, C.; Bermúdez, C.; Guélin, M. (2019). "Discovery of the first Ca-bearing molecule in space: CaNC". Astronomy & Astrophysics. 627: L4. arXiv: 1906.09352 . Bibcode:2019A&A...627L...4C. doi:10.1051/0004-6361/201936040. PMC   6640036 . PMID   31327871.
  67. Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters, 733 (2): L36, Bibcode:2011ApJ...733L..36Z, doi: 10.1088/2041-8205/733/2/L36
  68. Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1, 438: 259–264, Bibcode:1995ApJ...438..259H, doi: 10.1086/175070
  69. Lis, D. C.; et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics, 521: L9, arXiv: 1007.1461 , Bibcode:2010A&A...521L...9L, doi:10.1051/0004-6361/201014959, S2CID   43898052.
  70. "Europe's space telescope ISO finds water in distant places". XMM-Newton Press Release (Press release). April 29, 1997. p. 12. Bibcode:1997xmm..pres...12. Archived from the original on December 22, 2006. Retrieved 2007-02-08.[ better source needed ]
  71. Ossenkopf, V.; et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics, 518: L111, arXiv: 1005.2521 , Bibcode:2010A&A...518L.111O, doi:10.1051/0004-6361/201014577, S2CID   85444481.
  72. Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters, 541: L11–L14, arXiv: 1205.0361 , Bibcode:2012A&A...541L..11P, doi:10.1051/0004-6361/201219379, S2CID   40297948
  73. Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal, 163: L47–L52, Bibcode:1971ApJ...163L..47S, doi:10.1086/180664
  74. 1 2 Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series, 132 (2): 281–364, Bibcode:2001ApJS..132..281S, doi: 10.1086/318951 {{citation}}: CS1 maint: multiple names: authors list (link)
  75. Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal, 582 (2): L101–L104, Bibcode:2003ApJ...582L.101S, doi: 10.1086/367628
  76. 1 2 Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters, 303: L71–L74, Bibcode:1986ApJ...303L..71S, doi:10.1086/184655
  77. 1 2 3 4 5 6 Kawaguchi, Kentarou; et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal, 420: L95, Bibcode:1994ApJ...420L..95K, doi:10.1086/187171
  78. Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal, 662 (2): L91, Bibcode:2007ApJ...662L..91A, doi:10.1086/519561, hdl: 10261/191973 , S2CID   96978664
  79. 1 2 Agúndez, M; Marcelino, N; Cernicharo, J; Tafalla, M (2018). "Detection of interstellar HCS and its metastable isomer HSC: New pieces in the puzzle of sulfur chemistry". Astronomy & Astrophysics. 611: L1. arXiv: 1802.09401 . Bibcode:2018A&A...611L...1A. doi: 10.1051/0004-6361/201832743 . PMC   6031296 . PMID   29983448.
  80. Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1, 387: 417–429, Bibcode:1992ApJ...387..417W, doi: 10.1086/171094
  81. Hollis, J. M.; et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms, 16: 407–412, Bibcode:1991ASPC...16..407H
  82. van Dishoeck, Ewine F.; et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters, 416: L83–L86, Bibcode:1993ApJ...416L..83V, doi:10.1086/187076, hdl: 1887/2194
  83. Ziurys, L. M.; et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters, 436: L181–L184, Bibcode:1994ApJ...436L.181Z, doi: 10.1086/187662
  84. Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters, 262: L1–L5, Bibcode:1982ApJ...262L...1H, doi:10.1086/183900
  85. Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1, 245: 482–494, Bibcode:1981ApJ...245..482G, doi: 10.1086/158824
  86. Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin, 12: 440, Bibcode:1980BAAS...12..440P
  87. 1 2 3 4 5 6 7 8 9 10 Johansson, L. E. B.; et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics, 130 (2): 227–256, Bibcode:1984A&A...130..227J
  88. Cernicharo, José; et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters, 806 (1): L3, arXiv: 1505.01633 , Bibcode:2015ApJ...806L...3C, doi:10.1088/2041-8205/806/1/L3, PMC   4693961 , PMID   26722621
  89. Guélin, M.; et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics, 363: L9–L12, Bibcode:2000A&A...363L...9G
  90. Guélin, M.; et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics, 426 (2): L49–L52, Bibcode:2004A&A...426L..49G, doi: 10.1051/0004-6361:200400074
  91. 1 2 Snyder, Lewis E.; et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters, 61 (2): 77–115, Bibcode:1969PhRvL..22..679S, doi:10.1103/PhysRevLett.22.679
  92. Feuchtgruber, H.; et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal, 535 (2): L111–L114, arXiv: astro-ph/0005273 , Bibcode:2000ApJ...535L.111F, doi:10.1086/312711, PMID   10835311, S2CID   9194055
  93. Berne, Olivier; et al. (26 June 2023). "Formation of the Methyl Cation by Photochemistry in a Protoplanetary Disk" . Nature . 621 (7977): 56–59. arXiv: 2401.03296 . Bibcode:2023Natur.621...56B. doi:10.1038/s41586-023-06307-x. PMID   37364766. S2CID   259260435. Archived from the original on 27 June 2023. Retrieved 27 June 2023.
  94. 1 2 Irvine, W. M.; et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society, 16: 877, Bibcode:1984BAAS...16..877I
  95. Pety, J.; et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics, 548: A68, arXiv: 1210.8178 , Bibcode:2012A&A...548A..68P, doi:10.1051/0004-6361/201220062, S2CID   56425162
  96. Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics, 239: 319–325, Bibcode:1990A&A...239..319M
  97. Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1, 438: 223–225, Bibcode:1995ApJ...438..223B, doi: 10.1086/175066
  98. Thaddeus, P.; et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal, 677 (2): 1132–1139, Bibcode:2008ApJ...677.1132T, doi: 10.1086/528947 , hdl: 2152/34886
  99. Wootten, Alwyn; et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters, 380: L79–L83, Bibcode:1991ApJ...380L..79W, doi:10.1086/186178
  100. Ridgway, S. T.; et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature, 264 (5584): 345, 346, Bibcode:1976Natur.264..345R, doi:10.1038/264345a0, S2CID   4181772
  101. Ohishi, Masatoshi; et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters, 427 (1): L51–L54, Bibcode:1994ApJ...427L..51O, doi: 10.1086/187362 , PMID   11539493
  102. Cabezas, C.; Agúndez, M.; Marcelino, N.; Tercero, B.; Cuadrado, S.; Cernicharo, J. (October 2021). "Interstellar detection of the simplest aminocarbyne H2NC: an ignored but abundant molecule". Astronomy & Astrophysics. 654: A45. arXiv: 2107.08389 . Bibcode:2021A&A...654A..45C. doi:10.1051/0004-6361/202141491. S2CID   236088117.
  103. Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics, 244: 181–189, Bibcode:1991A&A...244..181M, PMID   11538284
  104. Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics, 244: L21–L24, Bibcode:1991A&A...244L..21G
  105. Agúndez, M.; et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics, 577: L5, arXiv: 1504.05721 , Bibcode:2015A&A...577L...5A, doi:10.1051/0004-6361/201526317, PMC   4693959 , PMID   26722130
  106. Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1, 334 (1): 175–181, Bibcode:1988ApJ...334..175M, doi:10.1086/166827, PMID   11538465
  107. Marcelino, Núria; et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal, 690 (1): L27–L30, arXiv: 0811.2679 , Bibcode:2009ApJ...690L..27M, doi:10.1088/0004-637X/690/1/L27, S2CID   16009836
  108. Brünken, S.; et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics, 516: A109, arXiv: 1005.2489 , Bibcode:2010A&A...516A.109B, doi:10.1051/0004-6361/200912456, S2CID   55371600
  109. Agúndez, M; Marcelino, N; Cernicharo, J (2018). "Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space". The Astrophysical Journal. 861 (2): L22. arXiv: 1806.10328 . Bibcode:2018ApJ...861L..22A. doi: 10.3847/2041-8213/aad089 . PMC   6120679 . PMID   30186588.
  110. Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics, 531: L8, arXiv: 1105.5799 , Bibcode:2011A&A...531L...8B, doi:10.1051/0004-6361/201117170, S2CID   54611741.
  111. Rivilla, V. M.; et al. (2021). "Detection of the cyanomidyl radical (HNCN): A new interstellar species with the NCN backbone". Monthly Notices of the Royal Astronomical Society: Letters. 506 (1): L79–L84. arXiv: 2106.09652 . Bibcode:2021MNRAS.506L..79R. doi: 10.1093/mnrasl/slab074 .
  112. Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters, 234: L143–L145, Bibcode:1979ApJ...234L.143F, doi:10.1086/183126
  113. 1 2 Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics, 138 (1): L5–L8, Bibcode:1984A&A...138L...5N
  114. Halfen, D. T.; et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters, 702 (2): L124–L127, Bibcode:2009ApJ...702L.124H, doi: 10.1088/0004-637X/702/2/L124
  115. Cabezas, C.; et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal, 775 (2): 133, arXiv: 1309.0371 , Bibcode:2013ApJ...775..133C, doi:10.1088/0004-637X/775/2/133, S2CID   118694017
  116. Coutens, A.; et al. (2019). "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium". Astronomy & Astrophysics. 623: L13. arXiv: 1903.03378 . Bibcode:2019A&A...623L..13C. doi:10.1051/0004-6361/201935040. S2CID   119274002.
  117. Butterworth, Anna L.; et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society, 347 (3): 807–812, Bibcode:2004MNRAS.347..807B, doi: 10.1111/j.1365-2966.2004.07251.x
  118. H. S. P. Müller (2013). "On Ammonium, NH4+, in the ISM" . Retrieved 2022-05-25.
  119. Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I.; Marcelino, N.; Roueff, E.; Gerin, M.; Pearson, J. (18 June 2013). "Detection of the Ammonium Ion in Space". The Astrophysical Journal. 771 (1): L10. arXiv: 1306.3364 . Bibcode:2013ApJ...771L..10C. doi:10.1088/2041-8205/771/1/L10. S2CID   118461954.
  120. Lacy, J. H.; et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal, 376: 556–560, Bibcode:1991ApJ...376..556L, doi:10.1086/170304
  121. Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters, 759 (2): L43–L46, Bibcode:2012ApJ...759L..43C, doi: 10.1088/2041-8205/759/2/L43 , S2CID   95954921
  122. 1 2 3 4 5 6 7 8 Finley, Dave (August 7, 2006). "Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life". NRAO Press Release (Press release). p. 9. Bibcode:2006nrao.pres....9. Retrieved 2006-08-10.[ better source needed ]
  123. 1 2 3 Fossé, David; et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal, 552 (1): 168–174, arXiv: astro-ph/0012405 , Bibcode:2001ApJ...552..168F, doi:10.1086/320471, S2CID   16107034
  124. Irvine, W. M.; et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters, 334 (2): L107–L111, Bibcode:1988ApJ...334L.107I, doi: 10.1086/185323 , PMID   11538463
  125. Dickens, J. E.; et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal, 479 (1 Pt 1): 307–12, Bibcode:1997ApJ...479..307D, doi: 10.1086/303884 , PMID   11541227
  126. McGuire, B.A.; et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters, 758 (2): L33–L38, arXiv: 1209.1590 , Bibcode:2012ApJ...758L..33M, doi:10.1088/2041-8205/758/2/L33, S2CID   26146516
  127. Ohishi, Masatoshi; et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal, 471 (1): L61–4, Bibcode:1996ApJ...471L..61O, doi: 10.1086/310325 , PMID   11541244
  128. Cernicharo, J.; et al. (2007), "Astronomical detection of C4H, the second interstellar anion", Astronomy and Astrophysics, 61 (2): L37–L40, Bibcode:2007A&A...467L..37C, doi: 10.1051/0004-6361:20077415
  129. 1 2 3 Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. (2001), "Observations of Formic Acid in Hot Molecular Cores", Astrophysical Journal, 552 (2): 654–663, Bibcode:2001ApJ...552..654L, doi: 10.1086/320563
  130. 1 2 Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics, 81 (1–2): 245–250, Bibcode:1980A&A....81..245W
  131. Kawaguchi, Kentarou; et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal, 386 (2): L51–L53, Bibcode:1992ApJ...386L..51K, doi: 10.1086/186290
  132. Zuckerman, B.; Ball, John A.; Gottlieb, Carl A. (1971). "Microwave Detection of Interstellar Formic Acid". Astrophysical Journal . 163: L41. Bibcode:1971ApJ...163L..41Z. doi:10.1086/180663.
  133. Turner, B. E.; et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal, 201: L149–L152, Bibcode:1975ApJ...201L.149T, doi:10.1086/181963
  134. 1 2 3 Ligterink, Niels F. W.; et al. (September 2020). "The Family of Amide Molecules toward NGC 6334I". The Astrophysical Journal. 901 (1): 23. arXiv: 2008.09157 . Bibcode:2020ApJ...901...37L. doi: 10.3847/1538-4357/abad38 . S2CID   221246432. 37.
  135. Rivilla, Víctor M.; et al. (2020). "Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH". The Astrophysical Journal. 899 (2): L28. arXiv: 2008.00228 . Bibcode:2020ApJ...899L..28R. doi: 10.3847/2041-8213/abac55 . S2CID   220935710.
  136. Agúndez, M.; et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics, 579: L10, arXiv: 1506.07043 , Bibcode:2015A&A...579L..10A, doi:10.1051/0004-6361/201526650, PMC   4630856 , PMID   26543239
  137. Remijan, Anthony J.; et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal, 675 (2): L85–L88, Bibcode:2008ApJ...675L..85R, doi:10.1086/533529, S2CID   19005362
  138. Bernath, P. F; Hinkle, K. H; Keady, J. J (1989). "Detection of C5 in the Circumstellar Shell of IRC+10216". Science. 244 (4904): 562–4. Bibcode:1989Sci...244..562B. doi:10.1126/science.244.4904.562. PMID   17769400. S2CID   20960839.
  139. Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters, 279: –L55–L58, Bibcode:1984ApJ...279L..55G, doi:10.1086/184255
  140. 1 2 3 Hollis, J. M.; et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond", Astrophysical Journal, 643 (1): L25–L28, Bibcode:2006ApJ...643L..25H, doi: 10.1086/505110
  141. Hollis, J. M.; et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal, 642 (2): 933–939, Bibcode:2006ApJ...642..933H, doi: 10.1086/501121
  142. Zaleski, D. P.; et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters, 765 (1): L109, arXiv: 1302.0909 , Bibcode:2013ApJ...765L..10Z, doi:10.1088/2041-8205/765/1/L10, S2CID   53552345
  143. Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters, 244: –L105, Bibcode:1981ApJ...244L.103B, doi: 10.1086/183490
  144. 1 2 3 4 5 Remijan, Anthony J.; et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal, 632 (1): 333–339, arXiv: astro-ph/0506502 , Bibcode:2005ApJ...632..333R, doi:10.1086/432908, S2CID   15244867
  145. "Complex Organic Molecules Discovered in Infant Star System". NRAO. Astrobiology Web. 8 April 2015. Retrieved 2015-04-09.
  146. First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  147. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1979), "Interstellar methyl mercaptan", Astrophysical Journal Letters, 234: L139–L142, Bibcode:1979ApJ...234L.139L, doi: 10.1086/183125
  148. 1 2 3 Cernicharo, José; et al. (2001), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters, 546 (2): L123–L126, Bibcode:2001ApJ...546L.123C, doi: 10.1086/318871
  149. Sanz-Novo, Miguel; et al. (July 2023). "Discovery of the Elusive Carbonic Acid (HOCOOH) in Space". The Astrophysical Journal. 954 (1): 3. arXiv: 2307.08644 . Bibcode:2023ApJ...954....3S. doi: 10.3847/1538-4357/ace523 .{{cite journal}}: CS1 maint: numeric names: authors list (link)
  150. Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics, 335: L1–L4, arXiv: astro-ph/9805105 , Bibcode:1998A&A...335L...1G
  151. Irvine, W. M.; et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters, 335 (2): L89–L93, Bibcode:1988ApJ...335L..89I, doi:10.1086/185346, PMID   11538462
  152. 1 2 3 4 Agúndez, M.; et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics, 570: A45, arXiv: 1408.6306 , Bibcode:2014A&A...570A..45A, doi:10.1051/0004-6361/201424542, S2CID   118440180
  153. 1 2 "Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space". NRAO Press Release (Press release). October 1, 2001. p. 16. Bibcode:2001nrao.pres...16. Retrieved 2006-12-20.[ better source needed ]
  154. 1 2 Dickens, J. E.; et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal, 489 (2): 753–757, Bibcode:1997ApJ...489..753D, doi: 10.1086/304821 , PMID   11541726
  155. Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal, 198: L85–L88, Bibcode:1975ApJ...198L..85K, doi:10.1086/181818
  156. Bizzocchi, L.; Prudenzano, D.; Rivilla, V. M.; Pietropolli-Charmet, A.; Giuliano, B. M.; Caselli, P.; Martín-Pintado, J.; Jiménez-Serra, I.; Martín, S.; Requena-Torres, M. A.; Rico-Villas, F. (2020-08-01). "Propargylimine in the laboratory and in space: millimetre-wave spectroscopy and its first detection in the ISM". Astronomy & Astrophysics. 640: A98. arXiv: 2006.08401 . Bibcode:2020A&A...640A..98B. doi:10.1051/0004-6361/202038083. ISSN   0004-6361. S2CID   219687234.
  157. McCarthy, M. C.; et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal, 652 (2): L141–L144, Bibcode:2006ApJ...652L.141M, doi: 10.1086/510238 , S2CID   123232090
  158. Xue, Ci; et al. (2020). "Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions". The Astrophysical Journal. 900 (1): L9. arXiv: 2008.12345 . Bibcode:2020ApJ...900L...9X. doi: 10.3847/2041-8213/aba631 . S2CID   221370815.
  159. McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C (2017). "Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope". The Astrophysical Journal . 843 (2): L28. arXiv: 1706.09766 . Bibcode:2017ApJ...843L..28M. doi: 10.3847/2041-8213/aa7ca3 . S2CID   119189492.
  160. Halfen, D. T.; et al. (2015), "Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets", Astrophysical Journal, 812 (1): L5, arXiv: 1509.09305 , Bibcode:2015ApJ...812L...5H, doi:10.1088/2041-8205/812/1/L5, S2CID   119191839
  161. Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. (2019). "First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium". Monthly Notices of the Royal Astronomical Society: Letters. 484 (1): L43–L48. arXiv: 1901.02576 . Bibcode:2019MNRAS.484L..43Z. doi: 10.1093/mnrasl/slz002 . S2CID   119382820.
  162. 1 2 Mehringer, David M.; et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters, 480 (1): L71, Bibcode:1997ApJ...480L..71M, doi: 10.1086/310612
  163. 1 2 Lovas, F. J.; et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters, 637 (1): L37–L40, Bibcode:2006ApJ...637L..37L, doi: 10.1086/500431
  164. McGuire, Brett A.; et al. (2020). "Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH2CN) in TMC-1". The Astrophysical Journal. 900 (1): L10. arXiv: 2008.12349 . Bibcode:2020ApJ...900L..10M. doi: 10.3847/2041-8213/aba632 . S2CID   221370721.
  165. Hollis, J. M.; Lovas, F. J.; Jewell, P. R. (10 September 2000). "Interstellar Glycolaldehyde: The First Sugar". The Astrophysical Journal. 540 (2): L107–L110. Bibcode:2000ApJ...540L.107H. doi: 10.1086/312881 .
  166. Rivilla, Víctor M.; et al. (1 April 2022). "Precursors of the RNA World in Space: Detection of (Z)-1,2-ethenediol in the Interstellar Medium, a Key Intermediate in Sugar Formation". Astrophysical Journal Letters . 929 (1): L11. arXiv: 2203.14728 . Bibcode:2022ApJ...929L..11R. doi: 10.3847/2041-8213/ac6186 .
  167. Loomis, R. A.; et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters, 765 (1): L9, arXiv: 1302.1121 , Bibcode:2013ApJ...765L...9L, doi:10.1088/2041-8205/765/1/L9, S2CID   118522676
  168. 1 2 Zeng, Shaoshan; et al. (1 October 2021). "Probing the Chemical Complexity of Amines in the ISM: Detection of Vinylamine (C2H3NH2) and Tentative Detection of Ethylamine (C2H5NH2)". The Astrophysical Journal Letters . 920 (2): L27. arXiv: 2110.01791 . Bibcode:2021ApJ...920L..27Z. doi: 10.3847/2041-8213/ac2c7e . S2CID   238354093.
  169. Guelin, M.; et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics, 317: L37–L40, Bibcode:1997A&A...317L...1G
  170. Belloche, A.; et al. (2008), "Detection of amino acetonitrile in Sgr B2(N)", Astronomy & Astrophysics, 482 (1): 179–196, arXiv: 0801.3219 , Bibcode:2008A&A...482..179B, doi:10.1051/0004-6361:20079203, S2CID   21809828
  171. Remijan, Anthony J.; et al. (2014), "Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea [(NH2)2CO]", Astrophysical Journal, 783 (2): 77, arXiv: 1401.4483 , Bibcode:2014ApJ...783...77R, doi:10.1088/0004-637X/783/2/77, S2CID   13902461
  172. 1 2 Remijan, Anthony J.; et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal, 643 (1): L37–L40, Bibcode:2006ApJ...643L..37R, doi: 10.1086/504918
  173. Snyder, L. E.; et al. (1974), "Radio Detection of Interstellar Dimethyl Ether", Astrophysical Journal, 191: L79–L82, Bibcode:1974ApJ...191L..79S, doi:10.1086/181554
  174. Zuckerman, B.; et al. (1975), "Detection of interstellar trans-ethyl alcohol", Astrophysical Journal, 196 (2): L99–L102, Bibcode:1975ApJ...196L..99Z, doi:10.1086/181753
  175. Cernicharo, J.; Guelin, M. (1996), "Discovery of the C8H radical", Astronomy and Astrophysics, 309: L26–L30, Bibcode:1996A&A...309L..27C
  176. Brünken, S.; et al. (2007), "Detection of the Carbon Chain Negative Ion C8H in TMC-1", Astrophysical Journal, 664 (1): L43–L46, Bibcode:2007ApJ...664L..43B, doi: 10.1086/520703
  177. Remijan, Anthony J.; et al. (2007), "Detection of C8H and Comparison with C8H toward IRC +10 216" (PDF), Astrophysical Journal, 664 (1): L47–L50, Bibcode:2007ApJ...664L..47R, doi:10.1086/520704, S2CID   117935231
  178. 1 2 3 Bell, M. B.; et al. (1997), "Detection of HC11N in the Cold Dust Cloud TMC-1", Astrophysical Journal Letters, 483 (1): L61–L64, arXiv: astro-ph/9704233 , Bibcode:1997ApJ...483L..61B, doi:10.1086/310732, S2CID   119459042
  179. Kroto, H. W.; et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal, 219: L133–L137, Bibcode:1978ApJ...219L.133K, doi:10.1086/182623
  180. Marcelino, N.; et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal, 665 (2): L127–L130, arXiv: 0707.1308 , Bibcode:2007ApJ...665L.127M, doi:10.1086/521398, S2CID   15832967
  181. Kolesniková, L.; et al. (2014), "Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion", Astrophysical Journal Letters, 784 (1): L7, arXiv: 1401.7810 , Bibcode:2014ApJ...784L...7K, doi:10.1088/2041-8205/784/1/L7, S2CID   119115343
  182. Snyder, Lewis E.; et al. (2002), "Confirmation of Interstellar Acetone", The Astrophysical Journal, 578 (1): 245–255, Bibcode:2002ApJ...578..245S, doi: 10.1086/342273
  183. Hollis, J. M.; et al. (2002), "Interstellar Antifreeze: Ethylene Glycol", Astrophysical Journal, 571 (1): L59–L62, Bibcode:2002ApJ...571L..59H, doi: 10.1086/341148
  184. Hollis, J. M. (2005). "Complex Molecules and the GBT: Is Isomerism the Key?" (PDF). Complex Molecules and the GBT: Is Isomerism the Key?. Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe. Asilomar, CA. pp. 119–127.[ better source needed ]
  185. McGuire, Brett A; et al. (2017). "ALMA Detection of Interstellar Methoxymethanol (CH3OCH2OH)". The Astrophysical Journal . 851 (2): L46. arXiv: 1712.03256 . Bibcode:2017ApJ...851L..46M. doi: 10.3847/2041-8213/aaa0c3 . S2CID   119211919.
  186. McGuire, B. A.; Carroll, P. B.; Loomis, R. A.; Finneran, I. A.; Jewell, P. R.; Remijan, A. J.; Blake, G. A. (2016). "Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)". Science. 352 (6292): 1449–52. arXiv: 1606.07483 . Bibcode:2016Sci...352.1449M. doi:10.1126/science.aae0328. PMID   27303055. S2CID   23838503.
  187. Rivilla, Víctor M.; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Briones, Carlos; Rodríguez-Almeida, Lucas F.; Rico-Villas, Fernando; Tercero, Belén; Zeng, Shaoshan; Colzi, Laura; Vicente, Pablo de; Martín, Sergio (2021-06-01). "Discovery in space of ethanolamine, the simplest phospholipid head group". Proceedings of the National Academy of Sciences. 118 (22). arXiv: 2105.11141 . Bibcode:2021PNAS..11801314R. doi: 10.1073/pnas.2101314118 . ISSN   0027-8424. PMC   8179234 . PMID   34031247.
  188. 1 2 Belloche, A.; et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics, 499 (1): 215–232, arXiv: 0902.4694 , Bibcode:2009A&A...499..215B, doi:10.1051/0004-6361/200811550, S2CID   98625608
  189. Tercero, B.; et al. (2013), "Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion", Astrophysical Journal Letters, 770 (1): L13, arXiv: 1305.1135 , Bibcode:2013ApJ...770L..13T, doi:10.1088/2041-8205/770/1/L13, S2CID   119251272
  190. Eyre, Michael (26 September 2014). "Complex organic molecule found in interstellar space". BBC News. Retrieved 2014-09-26.
  191. Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science. 345 (6204): 1584–1587. arXiv: 1410.2607 . Bibcode:2014Sci...345.1584B. doi:10.1126/science.1256678. PMID   25258074. S2CID   14573206.
  192. Fried, Zachary T. P.; et al. (1 April 2024). "Rotational Spectrum and First Interstellar Detection of 2-methoxyethanol Using ALMA Observations of NGC 6334I". Astrophysical Journal Letters . 965 (2): L23. arXiv: 2403.17341 . Bibcode:2024ApJ...965L..23F. doi: 10.3847/2041-8213/ad37ff .
  193. McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C. (12 January 2018). "Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium". Science . 359 (6372): 202–205. arXiv: 1801.04228 . Bibcode:2018Sci...359..202M. doi:10.1126/science.aao4890. PMID   29326270. S2CID   206663501.
  194. 1 2 Cami, Jan; et al. (July 22, 2010), "Detection of C60 and C70 in a Young Planetary Nebula", Science, 329 (5996): 1180–2, Bibcode:2010Sci...329.1180C, doi:10.1126/science.1192035, PMID   20651118, S2CID   33588270
  195. Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature, 369 (6478): 296–298, Bibcode:1994Natur.369..296F, doi:10.1038/369296a0, S2CID   4354516.
  196. Campbell, Ewen K.; Holz, Mathias; Gerlich, Dieter; Maier, John P. (2015), "Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands", Nature, 523 (7560): 322–323, Bibcode:2015Natur.523..322C, doi:10.1038/nature14566, PMID   26178962, S2CID   205244293
  197. Berné, Olivier; Mulas, Giacomo; Joblin, Christine (2013), "Interstellar C60+", Astronomy & Astrophysics , 550: L4, arXiv: 1211.7252 , Bibcode:2013A&A...550L...4B, doi:10.1051/0004-6361/201220730, S2CID   118684608
  198. 1 2 Lacour, S.; et al. (2005), "Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines", Astronomy and Astrophysics, 430 (3): 967–977, arXiv: astro-ph/0410033 , Bibcode:2005A&A...430..967L, doi:10.1051/0004-6361:20041589, S2CID   15081425
  199. 1 2 3 4 Ceccarelli, Cecilia (2002), "Millimeter and infrared observations of deuterated molecules", Planetary and Space Science, 50 (12–13): 1267–1273, Bibcode:2002P&SS...50.1267C, doi:10.1016/S0032-0633(02)00093-4
  200. Green, Sheldon (1989), "Collisional excitation of interstellar molecules - Deuterated water, HDO", Astrophysical Journal Supplement Series, 70: 813–831, Bibcode:1989ApJS...70..813G, doi:10.1086/191358
  201. Butner, H. M.; et al. (2007), "Discovery of interstellar heavy water", Astrophysical Journal, 659 (2): L137–L140, Bibcode:2007ApJ...659L.137B, doi:10.1086/517883, hdl: 10261/2640 , S2CID   43076462
  202. 1 2 3 4 Turner, B. E.; Zuckerman, B. (1978), "Observations of strongly deuterated molecules - Implications for interstellar chemistry", Astrophysical Journal Letters, 225: L75–L79, Bibcode:1978ApJ...225L..75T, doi: 10.1086/182797
  203. Melosso, M.; et al. (2020). "First detection of NHD and ND2 in the interstellar medium". Astronomy & Astrophysics. 641: A153. arXiv: 2007.07504 . Bibcode:2020A&A...641A.153M. doi:10.1051/0004-6361/202038490. S2CID   220525367.
  204. Lis, D. C.; et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal, 571 (1): L55–L58, Bibcode:2002ApJ...571L..55L, doi: 10.1086/341132 .
  205. Hatchell, J. (2003), "High NH2D/NH3 ratios in protostellar cores", Astronomy and Astrophysics, 403 (2): L25–L28, arXiv: astro-ph/0302564 , Bibcode:2003A&A...403L..25H, doi:10.1051/0004-6361:20030297, S2CID   118846422.
  206. Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters, 362: L29–L33, Bibcode:1990ApJ...362L..29T, doi:10.1086/185840.
  207. 1 2 Coutens, A.; et al. (9 May 2016). "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium". Astronomy & Astrophysics. 590: L6. arXiv: 1605.02562 . Bibcode:2016A&A...590L...6C. doi:10.1051/0004-6361/201628612. S2CID   32878172.
  208. Cernicharo, J.; et al. (2013), "Detection of the Ammonium ion in space", Astrophysical Journal Letters, 771 (1): L10, arXiv: 1306.3364 , Bibcode:2013ApJ...771L..10C, doi:10.1088/2041-8205/771/1/L10, S2CID   118461954
  209. Doménech, J. L.; et al. (2013), "Improved Determination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters, 771 (1): L11, arXiv: 1306.3792 , Bibcode:2013ApJ...771L..11D, doi:10.1088/2041-8205/771/1/L10, S2CID   118461954
  210. Gerin, M.; et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics, 253 (2): L29–L32, Bibcode:1992A&A...253L..29G.
  211. Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal, 627 (2): L117–L120, Bibcode:2005ApJ...627L.117M, doi:10.1086/432415, S2CID   119812200.
  212. Agúndez, M.; et al. (2008-06-04), "Tentative detection of phosphine in IRC +10216", Astronomy & Astrophysics, 485 (3): L33, arXiv: 0805.4297 , Bibcode:2008A&A...485L..33A, doi:10.1051/0004-6361:200810193, S2CID   16668630
  213. Gupta, H.; et al. (2013), "Laboratory Measurements and Tentative Astronomical Identification of H2NCO+" (PDF), Astrophysical Journal Letters, 778 (1): L1, Bibcode:2013ApJ...778L...1G, doi: 10.1088/2041-8205/778/1/L1
  214. Snyder, L. E.; et al. (2005), "A Rigorous Attempt to Verify Interstellar Glycine", Astrophysical Journal, 619 (2): 914–930, arXiv: astro-ph/0410335 , Bibcode:2005ApJ...619..914S, doi:10.1086/426677, S2CID   16286204.
  215. Kuan, Y. J.; et al. (2003), "Interstellar Glycine", Astrophysical Journal, 593 (2): 848–867, Bibcode:2003ApJ...593..848K, doi: 10.1086/375637 .
  216. Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters, 624 (1): L33–L36, Bibcode:2005ApJ...624L..33W, doi: 10.1086/430407
  217. Apponi, A. J.; Halfen, D. T.; Ziurys, L. M.; Hollis, J. M.; Remijan, Anthony J.; Lovas, F. J. (2006). "Investigating the Limits of Chemical Complexity in Sagittarius B2(N): A Rigorous Attempt to Confirm 1,3-Dihydroxyacetone". The Astrophysical Journal. 643 (1): L29–L32. Bibcode:2006ApJ...643L..29A. doi: 10.1086/504979 .
  218. Fuchs, G. W.; et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions", Astronomy & Astrophysics, 444 (2): 521–530, arXiv: astro-ph/0508395 , Bibcode:2005A&A...444..521F, doi:10.1051/0004-6361:20053599, S2CID   14314388
  219. Iglesias-Groth, S.; et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters, 685 (1): L55–L58, arXiv: 0809.0778 , Bibcode:2008ApJ...685L..55I, doi:10.1086/592349, S2CID   17190892 - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  220. García-Hernández, D. A.; et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters, 737 (2): L30, arXiv: 1107.2595 , Bibcode:2011ApJ...737L..30G, doi:10.1088/2041-8205/737/2/L30, S2CID   118504416.
  221. 1 2 Battersby, S. (2004). "Space molecules point to organic origins". New Scientist . Retrieved 11 December 2009.
  222. Iglesias-Groth, S.; et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society, 407 (4): 2157–2165, arXiv: 1005.4388 , Bibcode:2010MNRAS.407.2157I, doi: 10.1111/j.1365-2966.2010.17075.x , S2CID   56343980
  223. Iglesias-Groth, S. (August 2023). "A search for tryptophan in the gas of the IC 348 star cluster of the Perseus molecular cloud". Monthly Notices of the Royal Astronomical Society . 523 (2): 2876–2886. Bibcode:2023MNRAS.523.2876I. doi: 10.1093/mnras/stad1535 .
  224. Hudson, Reggie L. (2023). "Interstellar tryptophan revisited". Monthly Notices of the Royal Astronomical Society . 526 (3): 4051–4053. Bibcode:2023MNRAS.526.4051H. doi: 10.1093/mnras/stad3058 . there is no firm support for the tryptophan assignment
  225. Dhariwal, Aditya; et al. (June 2024). "On the Origin of Infrared Bands Attributed to Tryptophan in Spitzer Observations of IC 348". The Astrophysical Journal Letters . 968 (1): L9. arXiv: 2405.16773 . Bibcode:2024ApJ...968L...9D. doi: 10.3847/2041-8213/ad4d9a . ISSN   2041-8205. there is no compelling evidence for the tryptophan assignment

Notes

  1. On Earth, the dominant isotope of argon is 40Ar, so ArH+ would have a mass of 41 amu. However, the interstellar detection was of the 36ArH+ isotopologue, which has a mass of 37 amu.