List of interstellar and circumstellar molecules

Last updated

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.



The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultraviolet, optical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths. [1]

Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopy changes both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches. [2]

The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect. [3] Interactions between the atomic nuclei and the electrons sometimes cause further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.

Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937, through its strong electronic transition at 4300 angstroms (in the optical). [4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s. [3]

The inventory of detected molecules is highly biased towards certain types which are easier to detect: e.g. radio astronomy is most sensitive to small linear molecules with a high molecular dipole. [3] The most common molecule in the Universe, H2 (molecular hydrogen) is completely invisible to radio telescopes because it has no dipole; [3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket. [5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, the vibrational lines of polycyclic aromatic hydrocarbons (PAHs) were identified in 1984, [6] showing the class of molecules is very common in space, [7] but it took until 2021 to identify any specific PAHs through their rotational lines. [8] [9]

One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there. [10] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified. [11] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.

The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry. [12] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistry on cosmic dust, radiative transfer including interstellar extinction, and sophisticated reaction networks. [13]


The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass units. Deuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.

Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4. [14] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds. [14]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds. Carbon-monoxide-3D-vdW.png
Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.

Diatomic (43)

AlCl Aluminium monochloride [16] [17] 62.5
AlF Aluminium monofluoride [16] [18] 46
AlO Aluminium monoxide [19] 43
Argonium [20] [21] 37 [note 1] ArH+
C2 Diatomic carbon [22] [23] 24
Fluoromethylidynium 31CF+ [24]
CH Methylidyne radical [25] [26] 13CH+ [27]
CN Cyano radical [16] [26] [28] [29] 26CN+, [30] CN [31]
CO Carbon monoxide [16] [32] [33] 28CO+ [34]
CP Carbon monophosphide [29] 43
CS Carbon monosulfide [16] 44
FeO Iron(II) oxide [35] 82
Helium hydride ion [36] [37] 5HeH+
H2Molecular hydrogen [5] 2
HCl Hydrogen chloride [38] 36.5HCl+ [39]
HF Hydrogen fluoride [40] 20
HO Hydroxyl radical [16] 17OH+ [41]
KCl Potassium chloride [16] [17] 75.5
NH Imidogen radical [42] [43] 15
N2Molecular nitrogen [44] [45] 28
NO Nitric oxide [46] 30NO+ [30]
NS Nitrogen sulfide [16] 46
NaCl Sodium chloride [16] [17] 58.5
Magnesium monohydride cation25.3MgH+ [30]
O2 Molecular oxygen [47] 32
PN Phosphorus mononitride [48] [49] 45
PO Phosphorus monoxide [50] 47
SH Sulfur monohydride [51] 33SH+ [52]
SO Sulfur monoxide [16] 48SO+ [27]
SiC Carborundum [16] [53] 40
SiN [54] 42
SiO Silicon monoxide [16] 44
SiS Silicon monosulfide [16] 60
TiO Titanium(II) oxide [55] 63.9
The H
3 cation is one of the most abundant ions in the universe. It was first detected in 1993. Trihydrogen-cation-3D-vdW.png
The H
cation is one of the most abundant ions in the universe. It was first detected in 1993.

Triatomic (44)

AlNC Aluminium isocyanide [16] 53
AlOH Aluminium hydroxide [58] 44
C3 Tricarbon [59] [60] 36
C2H Ethynyl radical [16] [28] 25
CCN Cyanomethylidyne [61] 38
C2O Dicarbon monoxide [62] 40
C2S Thioxoethenylidene [63] 56
C2P [64] 55
CO2 Carbon dioxide [65] 44
CaNC Calcium isocyanide [66] 92
FeCN Iron cyanide [67] 82
Protonated molecular hydrogen 3H+
[56] [57]
H2C Methylene radical [68] 14
Chloronium 37.5H2Cl+ [69]
H2O Water [70] 18H2O+ [71]
HO2 Hydroperoxyl [72] 33
H2S Hydrogen sulfide [16] 34
HCN Hydrogen cyanide [16] [28] [73] 27
HNC Hydrogen isocyanide [74] [75] 27
HCO Formyl radical [76] 29HCO+ [27] [76] [77]
HCP Phosphaethyne [78] 44
HCS Thioformyl [79] 45HCS+ [27] [77]
Diazenylium [77] [27] [80] 29HN+
HNO Nitroxyl [81] 31
Isoformyl 29HOC+ [28]
HSC Isothioformyl [79] 45
KCN Potassium cyanide [16] 65
MgCN Magnesium cyanide [16] 50
MgNC Magnesium isocyanide [16] 50
NH2 Amino radical [82] 16
N2O Nitrous oxide [83] 44
NaCN Sodium cyanide [16] 49
NaOH Sodium hydroxide [84] 40
OCS Carbonyl sulfide [85] 60
O3 Ozone [86] 48
SO2 Sulfur dioxide [16] [87] 64
c-SiC2c-Silicon dicarbide [16] [53] 52
SiCSi Disilicon carbide [88] 68
SiCN Silicon carbonitride [89] 54
SiNC [90] 54
TiO2 Titanium dioxide [55] 79.9
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium. Formaldehyde-3D-vdW.png
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.

Four atoms (30)

CH3 Methyl radical [92] 15
l-C3H Propynylidyne [16] [93] 37l-C3H+ [94]
c-C3H Cyclopropynylidyne [95] 37
C3N Cyanoethynyl [96] 50C3N [97]
C3O Tricarbon monoxide [93] 52
C3S Tricarbon sulfide [16] [63] 68
Hydronium 19H3O+ [98]
C2H2 Acetylene [99] 26
H2CN Methylene amidogen [100] 28H2CN+ [27]
H2NC Aminocarbyne [101] 28
H2CO Formaldehyde [91] 30
H2CS Thioformaldehyde [102] 46
HCCN [103] 39
HCCO Ketenyl [104] 41
Protonated hydrogen cyanide 28 HCNH+ [77]
Protonated carbon dioxide 45HOCO+ [105]
HCNO Fulminic acid [106] 43
HOCN Cyanic acid [107] 43
CNCN Isocyanogen [108] 52
HOOH Hydrogen peroxide [109] 34
HNCO Isocyanic acid [87] 43
HNCN Cyanomidyl radical [110] 41
HNCS Isothiocyanic acid [111] 59
NH3 Ammonia [16] [112] 17
HSCN Thiocyanic acid [113] 59
SiC3 Silicon tricarbide [16]  64
HMgNC Hydromagnesium isocyanide [114]  51.3
HNO2 Nitrous acid [115] 47
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System. Methane-3D-space-filling.svg
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.

Five atoms (20)

Ammonium ion 18NH+
[117] [118]
CH4 Methane [119] 16
CH3O Methoxy radical [120] 31
c-C3H2 Cyclopropenylidene [28] [121] [122] 38
l-H2C3 Propadienylidene [122] 38
H2CCN Cyanomethyl [123] 40
H2C2O Ketene [87] 42
H2CNH Methylenimine [124] 29
HNCNH Carbodiimide [125] 42
Protonated formaldehyde 31H2COH+ [126]
C4H Butadiynyl [16] 49C4H [127]
HC3N Cyanoacetylene [16] [28] [77] [128] [129] 51
HCC-NC Isocyanoacetylene [130] 51
HCOOH Formic acid [131] [128] 46
NH2CN Cyanamide [132] [133] 42
NH2OH Hydroxylamine [134] 37
Protonated cyanogen 53NCCNH+ [135]
HC(O)CNCyanoformaldehyde [136] 55
C5 Linear C5 [137] 60
SiC4Silicon-carbide cluster [53] 92
SiH4 Silane [138] 32
In the ISM, formamide (above) can combine with methylene to form acetamide. Formamide-3D-vdW.png
In the ISM, formamide (above) can combine with methylene to form acetamide.

Six atoms (16)

c-H2C3O Cyclopropenone [140] 54
E-HNCHCNE-Cyanomethanimine [141] 54
C2H4 Ethylene [142] 28
CH3CN Acetonitrile [87] [143] [144] 40
CH3NC Methyl isocyanide [143] 40
CH3OH Methanol [87] [145] 32
CH3SH Methanethiol [146] 48
l-H2C4 Diacetylene [16] [147] 50
Protonated cyanoacetylene 52HC3NH+ [77]
HCONH2 Formamide [139] 44
C5H Pentynylidyne [16] [63] 61
C5N Cyanobutadiynyl radical [148] 74
HC2CHO Propynal [149] 54
HC4N [16]  63
CH2CNH Ketenimine [121] 40
C5S [150] 92
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space. Acetaldehyde-3D-vdW.png
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.

Seven atoms (13)

c-C2H4O Ethylene oxide [152] 44
CH3C2H Methylacetylene [28] 40
H3CNH2 Methylamine [153] 31
CH2CHCN Acrylonitrile [87] [143] 53
HCCCHNHPropargylimine [154] 53
H2CHCOH Vinyl alcohol [151] 44
C6H Hexatriynyl radical [16] [63] 73C6H [122] [155]
HC4CN Cyanodiacetylene [87] [129] [143] 75
HC4NC Isocyanodiacetylene [156] 75
HC5O [157] 77
CH3CHO Acetaldehyde [16] [152] 44
CH3NCO Methyl isocyanate [158] 57
HOCH2CN Glycolonitrile [159] 57
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997. Acetic-acid-3D-vdW.png
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.

Eight atoms (14)

H3CC2CN Methylcyanoacetylene [161] 65
HC3H2CN Propargyl cyanide [162] 65
H2COHCHO Glycolaldehyde [163] [164] 60
(CHOH)2 1,2-ethenediol [165] 60
HCOOCH3 Methyl formate [87] [128] [164] 60
CH3COOH Acetic acid [160] 60
H2C6 Hexapentaenylidene [16] [147] 74
CH2CHCHO Propenal [121] 56
CH2CCHCN Cyanoallene [121] [161] 65
CH3CHNH Ethanimine [166] 43
C2H3NH2 Vinylamine [167] 43
C7H Heptatrienyl radical [168] 85
NH2CH2CN Aminoacetonitrile [169] 56
(NH2)2CO Urea [170] 60

Nine atoms (10)

CH3C4H Methyldiacetylene [171] 64
CH3OCH3 Dimethyl ether [172] 46
CH3CH2CN Propionitrile [16] [87] [143] 55
CH3CONH2 Acetamide [121] [139] [133] 59
CH3CH2OH Ethanol [173] 46
C8H Octatetraynyl radical [174] 97C8H [175] [176]
HC7N Cyanohexatriyne or Cyanotriacetylene [16] [112] [177] [178] 99
CH3CHCH2 Propylene (propene) [179] 42
CH3CH2SH Ethyl mercaptan [180] 62
CH3NHCHO N-methylformamide [133]
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (21)

10(CH3)2CO Acetone [87] [181] 58
10(CH2OH)2 Ethylene glycol [182] [183] 62
10CH3CH2CHO Propanal [121] 58
10CH3OCH2OH Methoxymethanol [184] 62
10CH3C5N Methylcyanodiacetylene [121] 89
10CH3CHCH2O Propylene oxide [185] 58
11NH2CH2CH2OH Ethanolamine [186] 61
11HC8CN Cyanotetraacetylene [16] [177] 123
11C2H5OCHO Ethyl formate [187] 74
11CH3COOCH3 Methyl acetate [188] 74
11CH3C6H Methyltriacetylene [121] [171] 88
12C6H6 Benzene [147] 78
12C3H7CN n-Propyl cyanide [187] 69
12(CH3)2CHCN iso-Propyl cyanide [189] [190] 69
Benzonitrile [191] 104
13HC10CN Cyanopentaacetylene [177] 147
17C9H8 Indene [9] 116
19C10H7CN 1-cyanonaphthalene [8] 153
19C10H7CN 2-cyanonaphthalene [8] 153
60C60 Buckminsterfullerene
(C60 fullerene)
[193] [194] [195]
70C70 C70 fullerene [192] 840

Deuterated molecules (22)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

2HD Hydrogen deuteride [196] [197]
3H2D+, HD+
Trihydrogen cation [196] [197]
3HDO, D2O Heavy water [198] [199]
3DCN Hydrogen cyanide [200]
3DCO Formyl radical [200]
3DNC Hydrogen isocyanide [200]
3N2D+ [200]  
3NHD, ND2 Amidogen [201]  
4NH2D, NHD2, ND3 Ammonia [197] [202] [203]
4HDCO, D2CO Formaldehyde [197] [204]
4DNCO Isocyanic acid [205]
5NH3D+ Ammonium ion [206] [207]
Formamide [205]
7CH2DCCH, CH3CCD Methylacetylene [208] [209]

Unconfirmed (13)

Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections either are described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

2SiH Silylidine [74]
4PH3 Phosphine [210]
4MgCCH Magnesium monoacetylide [150]
4NCCP Cyanophosphaethyne [150]
5H2NCO+ [211]
4SiH3CN Silyl cyanide [150]
10H2NCH2COOH Glycine [212] [213]
10C2H5NH2 Ethylamine [167]
12CO(CH2OH)2 Dihydroxyacetone [214] [215]
12C2H5OCH3 Ethyl methyl ether [216]
Naphthalene cation [217]
24C24 Graphene [218]
24C14H10 Anthracene [219] [220]
26C16H10 Pyrene [219]

See also

Related Research Articles

<span class="mw-page-title-main">Gliese 876</span> Star in the constellation Aquarius

Gliese 876 is a red dwarf approximately 15 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after Gliese 1061, YZ Ceti, Tau Ceti, and Luyten's Star; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.

<span class="mw-page-title-main">26 Andromedae</span> Star in the constellation Andromeda

26 Andromedae, abbreviated 26 And, is a binary star system in the constellation Andromeda. 26 Andromedae is the Flamsteed designation. It has a combined apparent visual magnitude of 6.10, which is near the lower limit of visibility to the naked eye. The distance to this system can be estimated from its annual parallax shift of 5.35 mas, which yields a distance of about 600 light years. At that distance, the visual magnitude of the stars is diminished from an extinction of 0.04 due to interstellar dust. The system is moving further from the Earth with a heliocentric radial velocity of +3.3 km/s.

Nu<sup>1</sup> Boötis Orange-hued star in the constellation Boötes

Nu1 Boötis1 Boötis) is an orange-hued star in the northern constellation of Boötes. It has an apparent visual magnitude of +5.02, which indicates the star is faintly visible to the naked eye. Based upon an annual parallax shift of 3.89 mas as seen from Earth, it is located roughly 840 light years distant from the Sun. At that distance, the visual magnitude of the star is diminished by an extinction of 0.13 due to interstellar dust.

HD 4628 is a main sequence star in the equatorial constellation of Pisces. It has a spectral classification of K2.5 V and an effective temperature of 5,055 K, giving it an orange-red hue with a slightly smaller mass and girth than the Sun. HD 4628 lies at a distance of approximately 24.3 light years from the Sun based on parallax. The apparent magnitude of 5.7 is just sufficient for this star to be viewed with the unaided eye. The star appears to be slightly older than the Sun—approximately 5.4 billion years in age. The surface activity is low and, based upon the detection of UV emission, it may have a relatively cool corona with a temperature of one million K.

Xi Cassiopeiae is a blue-white hued binary star system in the northern constellation of Cassiopeia. It has an apparent visual magnitude of +4.81 and thus is faintly visible to the naked eye. Based upon an annual parallax shift of 2.28 mas as seen from Earth, this system is located roughly 1,400 light years from the Sun. At that distance, the visual magnitude of the system is diminished by an extinction factor of 0.20 due to interstellar dust. It is advancing in the general direction of the Sun with a radial velocity of roughly −10.6 km/s.

<span class="mw-page-title-main">Omega Cassiopeiae</span> Binary star system in constellation Cassiopeia

Omega Cassiopeiae is a binary star system in the northern constellation of Cassiopeia. It has a combined apparent visual magnitude of +4.99, which means it is a faint star but visible to the naked eye. Based upon an annual parallax shift of 4.65 mas as seen from Earth, this system is located roughly 730 light years from the Sun. At that distance, the visual magnitude is diminished by an extinction of 0.16 due to interstellar dust.

<span class="mw-page-title-main">CW Leonis</span> Star in the constellation Leo

CW Leonis or IRC +10216 is a carbon star that is embedded in a thick dust envelope. It was first discovered in 1969 by a group of astronomers led by Eric Becklin, based upon infrared observations made with the 62 inches (1.6 m) Caltech Infrared Telescope at Mount Wilson Observatory. Its energy is emitted mostly at infrared wavelengths. At a wavelength of 5 μm, it was found to have the highest flux of any object outside the Solar System.

Hydrogen isocyanide is a chemical with the molecular formula HNC. It is a minor tautomer of hydrogen cyanide (HCN). Its importance in the field of astrochemistry is linked to its ubiquity in the interstellar medium.

<span class="mw-page-title-main">HD 100546</span> Young star in the constellation Musca

HD 100546, is a star 316.4 light-years from Earth. It is orbited by an approximately 20 MJ exoplanet at 6.5 AU, although further examination of the disk profile indicate it might be a more massive object such as a brown dwarf or more than one planet. The star is surrounded by a circumstellar disk from a distance of 0.2 to 4 AU, and again from 13 AU out to a few hundred AU, with evidence for a protoplanet forming at a distance of around 47 AU.

Sagittarius B2 is a giant molecular cloud of gas and dust that is located about 120 parsecs (390 ly) from the center of the Milky Way. This complex is the largest molecular cloud in the vicinity of the core and one of the largest in the galaxy, spanning a region about 45 parsecs (150 ly) across. The total mass of Sgr B2 is about 3 million times the mass of the Sun. The mean hydrogen density within the cloud is 3000 atoms per cm3, which is about 20–40 times denser than a typical molecular cloud.

36 Ursae Majoris is a double star in the northern constellation of Ursa Major. With an apparent visual magnitude of 4.8, it can be seen with the naked eye in suitable dark skies. Based upon parallax measurements, this binary lies at a distance of 42 light-years from Earth.

<span class="mw-page-title-main">U Hydrae</span> Variable star in the constellation Hydra

U Hydrae is a single star in the equatorial constellation of Hydra, near the northern constellation border with Sextans. It is a semiregular variable star of sub-type SRb, with its brightness ranging from visual magnitude (V) 4.7 to 5.2 over a 450-day period, with some irregularity. This object is located at a distance of approximately 680 light years from the Sun based on parallax. It is drifting closer with a radial velocity of −26 km/s.

23 Orionis is a double star located around 1,200 light-years away from the Sun in the equatorial constellation of Orion. It is visible to the naked eye as a dim, blue-white-hued point of light with a combined apparent visual magnitude of 4.99. The pair are moving away from the Earth with a heliocentric radial velocity of +18 km/s, and they are members of the Orion OB1 association, subgroup 1a.

<span class="mw-page-title-main">HD 165634</span> Star in the constellation Sagittarius

HD 165634 is a star in the southern constellation of Sagittarius. It has a yellow hue and is faintly visible to the naked eye with apparent visual magnitude of 4.56. The star is located at a distance of approximately 339 light years from the Sun based on parallax, but is drifting closer with a radial velocity of −5 km/s. It has an absolute magnitude of −0.53.

69 Virginis is a single star in the zodiac constellation of Virgo, located about 259 light years away. It is visible to the naked eye as a faint orange-hued star with an apparent visual magnitude of 4.76, although it is a suspected variable that may range in magnitude from 4.75 down to 4.79. This object is moving closer to the Earth with a heliocentric radial velocity of −13 km/s. The light from this star is polarized due to intervening interstellar dust.

HD 126053 is the Henry Draper Catalogue designation for a star in the equatorial constellation of Virgo. It has an apparent magnitude of 6.25, which means it is faintly visible to the naked eye. According to the Bortle scale, it requires dark suburban or rural skies to view. Parallax measurements made by the Hipparcos spacecraft provide an estimated distance of 57 light years to this star. It is drifting closer with a heliocentric radial velocity of −19.2 km/s.

λ Librae is the Bayer designation for a binary star system in the zodiac constellation of Libra. It can be faintly seen with the naked eye, having an apparent visual magnitude of 5.03. With an annual parallax shift of 10.54 mas, it is roughly 310 light years from the Sun. At that distance, the visual magnitude of this system is diminished by an extinction factor of 0.22 due to interstellar dust. It is 0.1 degree north of the ecliptic.

<span class="mw-page-title-main">HD 73882</span> Eclipsing binary system in constellation Vela

HD 73882 is a visual binary system with the components separated by 0.6″ and a combined spectral class of O8. One of stars is an eclipsing binary system. The period of variability is listed as both 2.9199 days and 20.6 days, possibly due to the secondary being a spectroscopic binary star.

<span class="mw-page-title-main">V4332 Sagittarii</span>

V4332 Sagittarii is a nova-like event in the constellation of Sagittarius. It was discovered February 24, 1994 at an apparent visual magnitude of 8.9 by Japanese amateur astronomer Minoru Yamamoto from Okazaki, Aichi, then confirmed by K. Hirosawa. Initially designated Nova Sagittarii 1994 #1, it was given the variable star designation V4332 Sgr. A spectra of the event taken March 4 lacked the characteristic features of a classical nova, with the only emission lines being of the Balmer series. Subsequent spectra showed a rapid decline in luminosity and a change of spectral type over a period of five days. By 2003, the object was ~1500 times less luminous than at peak magnitude and showed a spectrum of an M-type star.


  1. Shu, Frank H. (1982), The Physical Universe: An Introduction to Astronomy , University Science Books, ISBN   978-0-935702-05-7
  2. Chaffee, Frederick H.; Lutz, Barry L.; Black, John H.; Vanden Bout, Paul A.; Snell, Ronald L. (1980). "Rotational fine-structure lines of interstellar C2 toward Zeta Persei". The Astrophysical Journal. 236: 474. Bibcode:1980ApJ...236..474C. doi:10.1086/157764.
  3. 1 2 3 4 McGuire, Brett A. (2018). "2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules". The Astrophysical Journal Supplement Series. 239 (2): 17. arXiv: 1809.09132 . Bibcode:2018ApJS..239...17M. doi:10.3847/1538-4365/aae5d2. S2CID   119522774.
  4. Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, retrieved 2007-02-13
  5. 1 2 Carruthers, George R. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal, 161: L81–L85, Bibcode:1970ApJ...161L..81C, doi:10.1086/180575
  6. Leger, A.; Puget, J. L. (1984). "Identification of the "unidentified" IR emission features of interstellar dust ?". Astronomy and Astrophysics. 137: L5. Bibcode:1984A&A...137L...5L.
  7. Tielens, A.G.G.M. (2008). "Interstellar Polycyclic Aromatic Hydrocarbon Molecules". Annual Review of Astronomy and Astrophysics. 46: 289–337. Bibcode:2008ARA&A..46..289T. doi:10.1146/annurev.astro.46.060407.145211.
  8. 1 2 3 McGuire, Brett A.; Loomis, Ryan A.; Burkhardt, Andrew M.; Lee, Kin Long Kelvin; Shingledecker, Christopher N.; Charnley, Steven B.; Cooke, Ilsa R.; Cordiner, Martin A.; Herbst, Eric; Kalenskii, Sergei; Siebert, Mark A.; Willis, Eric R.; Xue, Ci; Remijan, Anthony J.; McCarthy, Michael C. (19 March 2021). "Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering". Science. 371 (6535): 1265–1269. arXiv: 2103.09984 . Bibcode:2021Sci...371.1265M. doi:10.1126/science.abb7535. PMID   33737489. S2CID   232269920.
  9. 1 2 Burkhardt, Andrew M.; Long Kelvin Lee, Kin; Bryan Changala, P.; Shingledecker, Christopher N.; Cooke, Ilsa R.; Loomis, Ryan A.; Wei, Hongji; Charnley, Steven B.; Herbst, Eric; McCarthy, Michael C.; McGuire, Brett A. (1 June 2021). "Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1". The Astrophysical Journal Letters. 913 (2): L18. arXiv: 2104.15117 . Bibcode:2021ApJ...913L..18B. doi:10.3847/2041-8213/abfd3a. S2CID   233476519.
  10. Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series, 60: 819–878, Bibcode:1986ApJS...60..819C, doi:10.1086/191102
  11. Kaler, James B. (2002), The hundred greatest stars, Copernicus Series, Springer, ISBN   978-0-387-95436-3 , retrieved 2011-05-09
  12. Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN   978-0-7503-0310-1
  13. Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences, 103 (33): 12269–12273, Bibcode:2006PNAS..10312269D, doi: 10.1073/pnas.0602117103 , PMC   1567869 , PMID   16894166
  14. 1 2 Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry, 62: 173–184, Bibcode:2011ARPC...62..173K, doi:10.1146/annurev-physchem-032210-103332, PMID   21128763
  15. The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, retrieved 2007-02-16
  16. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Ziurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences, 103 (33): 12274–12279, Bibcode:2006PNAS..10312274Z, doi: 10.1073/pnas.0602277103 , PMC   1567870 , PMID   16894164
  17. 1 2 3 Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics, 183 (1): L10–L12, Bibcode:1987A&A...183L..10C
  18. Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal, 433 (2): 729–732, Bibcode:1994ApJ...433..729Z, doi:10.1086/174682
  19. Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal, 694 (1): L59–L63, Bibcode:2009ApJ...694L..59T, doi: 10.1088/0004-637X/694/1/L59
  20. Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science , 342 (6164): 1343–1345, arXiv: 1312.4843 , Bibcode:2013Sci...342.1343B, doi:10.1126/science.1243582, PMID   24337290, S2CID   37578581
  21. Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space". New York Times . Retrieved 13 December 2013.
  22. Souza, S. P; Lutz, B. L (1977). "Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/". The Astrophysical Journal. 216: L49. Bibcode:1977ApJ...216L..49S. doi:10.1086/182507.
  23. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal, 438: 740–749, Bibcode:1995ApJ...438..740L, doi:10.1086/175119
  24. Neufeld, D. A.; et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics, 454 (2): L37–L40, arXiv: astro-ph/0603201 , Bibcode:2006A&A...454L..37N, doi:10.1051/0004-6361:200600015, S2CID   119471648
  25. Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight". NASA . Retrieved 13 October 2016.
  26. 1 2 Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal, 93: 11–23, Bibcode:1941ApJ....93...11A, doi:10.1086/144237
  27. 1 2 3 4 5 6 Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London, 324 (1578): 257–273, Bibcode:1988RSPTA.324..257S, doi:10.1098/rsta.1988.0016, S2CID   120128881
  28. 1 2 3 4 5 6 7 Fuente, A.; et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal, 619 (2): L155–L158, arXiv: astro-ph/0412361 , Bibcode:2005ApJ...619L.155F, doi:10.1086/427990, S2CID   14004275
  29. 1 2 Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics, 230: L9–L11, Bibcode:1990A&A...230L...9G
  30. 1 2 3 Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN   978-3-540-43362-0
  31. Agúndez, M.; et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion", Astronomy & Astrophysics, 517: L2, arXiv: 1007.0662 , Bibcode:2010A&A...517L...2A, doi:10.1051/0004-6361/201015186, S2CID   67782707 , retrieved 2010-09-03
  32. Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". LA Times . Retrieved March 9, 2014.
  33. Dent, W.R.F.; Wyatt, M.C.;Roberge, A.; Augereau, J.-C.; Casassus, S.;Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I; Hales, A.; Jackson, A.P.; Hughes, A. Meredith; Lagrange, A.-M; Matthews, B.; Wilner, D. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science . 343 (6178): 1490–1492. arXiv: 1404.1380 . Bibcode:2014Sci...343.1490D. doi:10.1126/science.1248726. PMID   24603151. S2CID   206553853.{{cite journal}}: CS1 maint: uses authors parameter (link)
  34. Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters, 419: L97, Bibcode:1993ApJ...419L..97L, doi:10.1086/187146
  35. Furuya, R. S.; et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics, 409 (2): L21–L24, Bibcode:2003A&A...409L..21F, doi: 10.1051/0004-6361:20031304
  36. Fisher, Christine (17 April 2019). "NASA finally found evidence of the universe's earliest molecule - The elusive helium hydride was found 3,000 light-years away". Engadget . Retrieved 17 April 2018.
  37. Güsten, Rolf; et al. (17 April 2019). "Astrophysical detection of the helium hydride ion HeH+". Nature . 568 (7752): 357–359. arXiv: 1904.09581 . Bibcode:2019Natur.568..357G. doi:10.1038/s41586-019-1090-x. PMID   30996316. S2CID   119548024.
  38. Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1" (PDF), Astrophysical Journal, Part 1, 295: 501–506, Bibcode:1985ApJ...295..501B, doi:10.1086/163394
  39. De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters, 751 (2): L37, Bibcode:2012ApJ...751L..37D, doi:10.1088/2041-8205/751/2/L37, S2CID   123355062
  40. Neufeld, David A.; et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters, 488 (2): L141–L144, arXiv: astro-ph/9708013 , Bibcode:1997ApJ...488L.141N, doi:10.1086/310942, S2CID   14166201
  41. Wyrowski, F.; et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics, 518: A26, arXiv: 1004.2627 , Bibcode:2010A&A...518A..26W, doi:10.1051/0004-6361/201014364, S2CID   119265403
  42. Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters, 376: L49–L52, Bibcode:1991ApJ...376L..49M, doi:10.1086/186100
  43. Wagenblast, R.; et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society, 260 (2): 420–424, Bibcode:1993MNRAS.260..420W, doi: 10.1093/mnras/260.2.420
  44. Astronomers Detect Molecular Nitrogen Outside Solar System, Space Daily, June 9, 2004, retrieved 2010-06-25
  45. Knauth, D. C; et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature, 429 (6992): 636–638, Bibcode:2004Natur.429..636K, doi:10.1038/nature02614, PMID   15190346, S2CID   4302582
  46. McGonagle, D.; et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1, 359 (1 Pt 1): 121–124, Bibcode:1990ApJ...359..121M, doi:10.1086/169040, PMID   11538685
  47. Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space,, retrieved 2007-04-02
  48. Turner, B. E.; Bally, John (1987). "Detection of interstellar PN - the first identified phosphorus compound in the interstellar medium". The Astrophysical Journal. 321: L75. Bibcode:1987ApJ...321L..75T. doi:10.1086/185009.
  49. Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters, 321 (1 Pt 2): L81–L85, Bibcode:1987ApJ...321L..81Z, doi:10.1086/185010, PMID   11542218
  50. Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters, 666 (1): L29–L32, Bibcode:2007ApJ...666L..29T, doi:10.1086/521361, S2CID   121424802
  51. Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal, 528 (1): L33–L36, arXiv: astro-ph/9911080 , Bibcode:2000ApJ...528L..33Y, doi:10.1086/312420, PMID   10587489, S2CID   32928458
  52. Menten, K. M.; et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl", Astronomy & Astrophysics, 525: A77, arXiv: 1009.2825 , Bibcode:2011A&A...525A..77M, doi:10.1051/0004-6361/201014363, S2CID   119281811.
  53. 1 2 3 Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science, 226 (1): 149–163, Bibcode:1995Ap&SS.226..149P, doi:10.1007/BF00626907, S2CID   121702812
  54. Turner, B. E. (1992). "Detection of SiN in IRC + 10216". The Astrophysical Journal. 388: L35. Bibcode:1992ApJ...388L..35T. doi:10.1086/186324.
  55. 1 2 Kamiński, T.; et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics, 551: A113, arXiv: 1301.4344 , Bibcode:2013A&A...551A.113K, doi:10.1051/0004-6361/201220290, S2CID   59038056
  56. 1 2 Oka, Takeshi (2006), "Interstellar H3+", Proceedings of the National Academy of Sciences, 103 (33): 12235–12242, Bibcode:2006PNAS..10312235O, doi: 10.1073/pnas.0601242103 , PMC   1567864 , PMID   16894171
  57. 1 2 Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature, 384 (6607): 334–335, Bibcode:1996Natur.384..334G, doi:10.1038/384334a0, PMID   8934516, S2CID   4370842
  58. Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal, 712 (1): L93–L97, Bibcode:2010ApJ...712L..93T, doi: 10.1088/2041-8205/712/1/L93
  59. Hinkle, K. W; Keady, J. J; Bernath, P. F (1988). "Detection of C3 in the Circumstellar Shell of IRC+10216". Science. 241 (4871): 1319–22. Bibcode:1988Sci...241.1319H. doi:10.1126/science.241.4871.1319. PMID   17828935. S2CID   40349500.
  60. Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A (2001). "Detection of C3 in Diffuse Interstellar Clouds". The Astrophysical Journal. 553 (1): 267–273. arXiv: astro-ph/0102449 . Bibcode:2001ApJ...553..267M. doi:10.1086/320668. S2CID   14404584.
  61. Anderson, J. K.; et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal, 795 (1): L1, Bibcode:2014ApJ...795L...1A, doi:10.1088/2041-8205/795/1/L1, S2CID   94778638
  62. Ohishi, Masatoshi, Masatoshi; et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters, 380: L39–L42, Bibcode:1991ApJ...380L..39O, doi:10.1086/186168, PMID   11538087
  63. 1 2 3 4 Irvine, William M.; et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications, 26: 167–180, Bibcode:1988ApL&C..26..167I, PMID   11538461
  64. Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal, 677 (2): L101–L104, Bibcode:2008ApJ...677L.101H, doi: 10.1086/588024
  65. Whittet, Douglas C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society, 252: 63–67, Bibcode:1991MNRAS.252...63W, doi: 10.1093/mnras/252.1.63
  66. Cernicharo, J.; Velilla-Prieto, L.; Agúndez, M.; Pardo, J. R.; Fonfría, J. P.; Quintana-Lacaci, G.; Cabezas, C.; Bermúdez, C.; Guélin, M. (2019). "Discovery of the first Ca-bearing molecule in space: CaNC". Astronomy & Astrophysics. 627: L4. arXiv: 1906.09352 . Bibcode:2019A&A...627L...4C. doi:10.1051/0004-6361/201936040. PMC   6640036 . PMID   31327871.
  67. Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters, 733 (2): L36, Bibcode:2011ApJ...733L..36Z, doi: 10.1088/2041-8205/733/2/L36
  68. Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1, 438: 259–264, Bibcode:1995ApJ...438..259H, doi:10.1086/175070
  69. Lis, D. C.; et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics, 521: L9, arXiv: 1007.1461 , Bibcode:2010A&A...521L...9L, doi:10.1051/0004-6361/201014959, S2CID   43898052.
  70. "Europe's space telescope ISO finds water in distant places", XMM-Newton Press Release: 12, April 29, 1997, Bibcode:1997xmm..pres...12., archived from the original on December 22, 2006, retrieved 2007-02-08
  71. Ossenkopf, V.; et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics, 518: L111, arXiv: 1005.2521 , Bibcode:2010A&A...518L.111O, doi:10.1051/0004-6361/201014577, S2CID   85444481.
  72. Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters, 541: L11–L14, arXiv: 1205.0361 , Bibcode:2012A&A...541L..11P, doi:10.1051/0004-6361/201219379, S2CID   40297948
  73. Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal, 163: L47–L52, Bibcode:1971ApJ...163L..47S, doi:10.1086/180664
  74. 1 2 Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series, 132 (2): 281–364, Bibcode:2001ApJS..132..281S, doi: 10.1086/318951
  75. Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal, 582 (2): L101–L104, Bibcode:2003ApJ...582L.101S, doi: 10.1086/367628
  76. 1 2 Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters, 303: L71–L74, Bibcode:1986ApJ...303L..71S, doi:10.1086/184655
  77. 1 2 3 4 5 6 Kawaguchi, Kentarou; et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal, 420: L95, Bibcode:1994ApJ...420L..95K, doi:10.1086/187171
  78. Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal, 662 (2): L91, Bibcode:2007ApJ...662L..91A, doi:10.1086/519561, hdl: 10261/191973 , S2CID   96978664
  79. 1 2 Agúndez, M; Marcelino, N; Cernicharo, J; Tafalla, M (2018). "Detection of interstellar HCS and its metastable isomer HSC: New pieces in the puzzle of sulfur chemistry". Astronomy & Astrophysics. 611: L1. arXiv: 1802.09401 . Bibcode:2018A&A...611L...1A. doi: 10.1051/0004-6361/201832743 . PMC   6031296 . PMID   29983448.
  80. Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1, 387: 417–429, Bibcode:1992ApJ...387..417W, doi:10.1086/171094
  81. Hollis, J. M.; et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms, 16: 407–412, Bibcode:1991ASPC...16..407H
  82. van Dishoeck, Ewine F.; et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters, 416: L83–L86, Bibcode:1993ApJ...416L..83V, doi:10.1086/187076, hdl: 1887/2194
  83. Ziurys, L. M.; et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters, 436: L181–L184, Bibcode:1994ApJ...436L.181Z, doi:10.1086/187662
  84. Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters, 262: L1–L5, Bibcode:1982ApJ...262L...1H, doi:10.1086/183900
  85. Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1, 245: 482–494, Bibcode:1981ApJ...245..482G, doi:10.1086/158824
  86. Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin, 12: 440, Bibcode:1980BAAS...12..440P
  87. 1 2 3 4 5 6 7 8 9 10 Johansson, L. E. B.; et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics, 130 (2): 227–256, Bibcode:1984A&A...130..227J
  88. Cernicharo, José; et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters, 806 (1): L3, arXiv: 1505.01633 , Bibcode:2015ApJ...806L...3C, doi:10.1088/2041-8205/806/1/L3, PMC   4693961 , PMID   26722621
  89. Guélin, M.; et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics, 363: L9–L12, Bibcode:2000A&A...363L...9G
  90. Guélin, M.; et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics, 426 (2): L49–L52, Bibcode:2004A&A...426L..49G, doi: 10.1051/0004-6361:200400074
  91. 1 2 Snyder, Lewis E.; et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters, 61 (2): 77–115, Bibcode:1969PhRvL..22..679S, doi:10.1103/PhysRevLett.22.679
  92. Feuchtgruber, H.; et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal, 535 (2): L111–L114, arXiv: astro-ph/0005273 , Bibcode:2000ApJ...535L.111F, doi:10.1086/312711, PMID   10835311, S2CID   9194055
  93. 1 2 Irvine, W. M.; et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society, 16: 877, Bibcode:1984BAAS...16..877I
  94. Pety, J.; et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics, 548: A68, arXiv: 1210.8178 , Bibcode:2012A&A...548A..68P, doi:10.1051/0004-6361/201220062, S2CID   56425162
  95. Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics, 239: 319–325, Bibcode:1990A&A...239..319M
  96. Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1, 438: 223–225, Bibcode:1995ApJ...438..223B, doi:10.1086/175066
  97. Thaddeus, P.; et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal, 677 (2): 1132–1139, Bibcode:2008ApJ...677.1132T, doi: 10.1086/528947
  98. Wootten, Alwyn; et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters, 380: L79–L83, Bibcode:1991ApJ...380L..79W, doi:10.1086/186178
  99. Ridgway, S. T.; et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature, 264 (5584): 345, 346, Bibcode:1976Natur.264..345R, doi:10.1038/264345a0, S2CID   4181772
  100. Ohishi, Masatoshi; et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters, 427 (1): L51–L54, Bibcode:1994ApJ...427L..51O, doi:10.1086/187362, PMID   11539493
  101. Cabezas, C.; Agúndez, M.; Marcelino, N.; Tercero, B.; Cuadrado, S.; Cernicharo, J. (October 2021). "Interstellar detection of the simplest aminocarbyne H2NC: an ignored but abundant molecule". Astronomy & Astrophysics. 654: A45. arXiv: 2107.08389 . Bibcode:2021A&A...654A..45C. doi:10.1051/0004-6361/202141491. S2CID   236088117.
  102. Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics, 244: 181–189, Bibcode:1991A&A...244..181M, PMID   11538284
  103. Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics, 244: L21–L24, Bibcode:1991A&A...244L..21G
  104. Agúndez, M.; et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics, 577: L5, arXiv: 1504.05721 , Bibcode:2015A&A...577L...5A, doi:10.1051/0004-6361/201526317, PMC   4693959 , PMID   26722130
  105. Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1, 334 (1): 175–181, Bibcode:1988ApJ...334..175M, doi:10.1086/166827, PMID   11538465
  106. Marcelino, Núria; et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal, 690 (1): L27–L30, arXiv: 0811.2679 , Bibcode:2009ApJ...690L..27M, doi:10.1088/0004-637X/690/1/L27, S2CID   16009836
  107. Brünken, S.; et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics, 516: A109, arXiv: 1005.2489 , Bibcode:2010A&A...516A.109B, doi:10.1051/0004-6361/200912456, S2CID   55371600
  108. Agúndez, M; Marcelino, N; Cernicharo, J (2018). "Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space". The Astrophysical Journal. 861 (2): L22. arXiv: 1806.10328 . Bibcode:2018ApJ...861L..22A. doi:10.3847/2041-8213/aad089. PMC   6120679 . PMID   30186588.
  109. Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics, 531: L8, arXiv: 1105.5799 , Bibcode:2011A&A...531L...8B, doi:10.1051/0004-6361/201117170, S2CID   54611741.
  110. Rivilla, V. M.; Jiménez-Serra, I.; García De La Concepción, J.; Martín-Pintado, J.; Colzi, L.; Rodríguez-Almeida, L. F.; Tercero, B.; Rico-Villas, F.; Zeng, S.; Martín, S.; Requena-Torres, M. A.; De Vicente, P. (2021). "Detection of the cyanomidyl radical (HNCN): A new interstellar species with the NCN backbone". Monthly Notices of the Royal Astronomical Society: Letters. 506 (1): L79–L84. arXiv: 2106.09652 . Bibcode:2021MNRAS.506L..79R. doi:10.1093/mnrasl/slab074.
  111. Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters, 234: L143–L145, Bibcode:1979ApJ...234L.143F, doi:10.1086/183126
  112. 1 2 Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics, 138 (1): L5–L8, Bibcode:1984A&A...138L...5N
  113. Halfen, D. T.; et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters, 702 (2): L124–L127, Bibcode:2009ApJ...702L.124H, doi: 10.1088/0004-637X/702/2/L124
  114. Cabezas, C.; et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal, 775 (2): 133, arXiv: 1309.0371 , Bibcode:2013ApJ...775..133C, doi:10.1088/0004-637X/775/2/133, S2CID   118694017
  115. Coutens, A.; Ligterink, N. F. W.; Loison, J.-C.; Wakelam, V.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Müller, H. S. P.; Van Dishoeck, E. F.; Wampfler, S. F. (2019). "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium". Astronomy & Astrophysics. 623: L13. arXiv: 1903.03378 . Bibcode:2019A&A...623L..13C. doi:10.1051/0004-6361/201935040. S2CID   119274002.
  116. Butterworth, Anna L.; et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society, 347 (3): 807–812, Bibcode:2004MNRAS.347..807B, doi: 10.1111/j.1365-2966.2004.07251.x
  117. H. S. P. Müller (2013). "On Ammonium, NH4+, in the ISM" . Retrieved 2022-05-25.
  118. Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I.; Marcelino, N.; Roueff, E.; Gerin, M.; Pearson, J. (18 June 2013). "Detection of the Ammonium Ion in Space". The Astrophysical Journal. 771 (1): L10. arXiv: 1306.3364 . Bibcode:2013ApJ...771L..10C. doi:10.1088/2041-8205/771/1/L10. S2CID   118461954.
  119. Lacy, J. H.; et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal, 376: 556–560, Bibcode:1991ApJ...376..556L, doi:10.1086/170304
  120. Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters, 759 (2): L43–L46, Bibcode:2012ApJ...759L..43C, doi:10.1088/2041-8205/759/2/L43, S2CID   95954921
  121. 1 2 3 4 5 6 7 8 Finley, Dave (August 7, 2006), "Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life", NRAO Press Release: 9, Bibcode:2006nrao.pres....9. , retrieved 2006-08-10
  122. 1 2 3 Fossé, David; et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal, 552 (1): 168–174, arXiv: astro-ph/0012405 , Bibcode:2001ApJ...552..168F, doi:10.1086/320471, S2CID   16107034
  123. Irvine, W. M.; et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters, 334 (2): L107–L111, Bibcode:1988ApJ...334L.107I, doi:10.1086/185323, PMID   11538463
  124. Dickens, J. E.; et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal, 479 (1 Pt 1): 307–12, Bibcode:1997ApJ...479..307D, doi: 10.1086/303884 , PMID   11541227
  125. McGuire, B.A.; et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters, 758 (2): L33–L38, arXiv: 1209.1590 , Bibcode:2012ApJ...758L..33M, doi:10.1088/2041-8205/758/2/L33, S2CID   26146516
  126. Ohishi, Masatoshi; et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal, 471 (1): L61–4, Bibcode:1996ApJ...471L..61O, doi: 10.1086/310325 , PMID   11541244
  127. Cernicharo, J.; et al. (2007), "Astronomical detection of C4H, the second interstellar anion", Astronomy and Astrophysics, 61 (2): L37–L40, Bibcode:2007A&A...467L..37C, doi: 10.1051/0004-6361:20077415
  128. 1 2 3 Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. (2001), "Observations of Formic Acid in Hot Molecular Cores", Astrophysical Journal, 552 (2): 654–663, Bibcode:2001ApJ...552..654L, doi: 10.1086/320563
  129. 1 2 Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics, 81 (1–2): 245–250, Bibcode:1980A&A....81..245W
  130. Kawaguchi, Kentarou; et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal, 386 (2): L51–L53, Bibcode:1992ApJ...386L..51K, doi:10.1086/186290
  131. Zuckerman, B.; Ball, John A.; Gottlieb, Carl A. (1971). "Microwave Detection of Interstellar Formic Acid". Astrophysical Journal . 163: L41. Bibcode:1971ApJ...163L..41Z. doi:10.1086/180663.
  132. Turner, B. E.; et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal, 201: L149–L152, Bibcode:1975ApJ...201L.149T, doi:10.1086/181963
  133. 1 2 3 Ligterink, Niels F. W.; et al. (September 2020). "The Family of Amide Molecules toward NGC 6334I". The Astrophysical Journal. 901 (1): 23. arXiv: 2008.09157 . Bibcode:2020ApJ...901...37L. doi:10.3847/1538-4357/abad38. S2CID   221246432. 37.
  134. Rivilla, Víctor M.; Martín-Pintado, Jesús; Jiménez-Serra, Izaskun; Martín, Sergio; Rodríguez-Almeida, Lucas F.; Requena-Torres, Miguel A.; Rico-Villas, Fernando; Zeng, Shaoshan; Briones, Carlos (2020). "Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH". The Astrophysical Journal. 899 (2): L28. arXiv: 2008.00228 . Bibcode:2020ApJ...899L..28R. doi:10.3847/2041-8213/abac55. S2CID   220935710.
  135. Agúndez, M.; et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics, 579: L10, arXiv: 1506.07043 , Bibcode:2015A&A...579L..10A, doi:10.1051/0004-6361/201526650, PMC   4630856 , PMID   26543239
  136. Remijan, Anthony J.; et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal, 675 (2): L85–L88, Bibcode:2008ApJ...675L..85R, doi:10.1086/533529, S2CID   19005362
  137. Bernath, P. F; Hinkle, K. H; Keady, J. J (1989). "Detection of C5 in the Circumstellar Shell of IRC+10216". Science. 244 (4904): 562–4. Bibcode:1989Sci...244..562B. doi:10.1126/science.244.4904.562. PMID   17769400. S2CID   20960839.
  138. Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters, 279: –L55–L58, Bibcode:1984ApJ...279L..55G, doi:10.1086/184255
  139. 1 2 3 Hollis, J. M.; et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond", Astrophysical Journal, 643 (1): L25–L28, Bibcode:2006ApJ...643L..25H, doi: 10.1086/505110
  140. Hollis, J. M.; et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal, 642 (2): 933–939, Bibcode:2006ApJ...642..933H, doi: 10.1086/501121
  141. Zaleski, D. P.; et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters, 765 (1): L109, arXiv: 1302.0909 , Bibcode:2013ApJ...765L..10Z, doi:10.1088/2041-8205/765/1/L10, S2CID   53552345
  142. Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters, 244: –L105, Bibcode:1981ApJ...244L.103B, doi:10.1086/183490
  143. 1 2 3 4 5 Remijan, Anthony J.; et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal, 632 (1): 333–339, arXiv: astro-ph/0506502 , Bibcode:2005ApJ...632..333R, doi:10.1086/432908, S2CID   15244867
  144. "Complex Organic Molecules Discovered in Infant Star System". NRAO. Astrobiology Web. 8 April 2015. Retrieved 2015-04-09.
  145. First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  146. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1979), "Interstellar methyl mercaptan", Astrophysical Journal Letters, 234: L139–L142, Bibcode:1979ApJ...234L.139L, doi:10.1086/183125
  147. 1 2 3 Cernicharo, José; et al. (2001), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters, 546 (2): L123–L126, Bibcode:2001ApJ...546L.123C, doi: 10.1086/318871
  148. Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics, 335: L1–L4, arXiv: astro-ph/9805105 , Bibcode:1998A&A...335L...1G
  149. Irvine, W. M.; et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters, 335 (2): L89–L93, Bibcode:1988ApJ...335L..89I, doi:10.1086/185346, PMID   11538462
  150. 1 2 3 4 Agúndez, M.; et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics, 570: A45, arXiv: 1408.6306 , Bibcode:2014A&A...570A..45A, doi:10.1051/0004-6361/201424542, S2CID   118440180
  151. 1 2 "Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space", NRAO Press Release: 16, October 1, 2001, Bibcode:2001nrao.pres...16. , retrieved 2006-12-20
  152. 1 2 Dickens, J. E.; et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal, 489 (2): 753–757, Bibcode:1997ApJ...489..753D, doi: 10.1086/304821 , PMID   11541726
  153. Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal, 198: L85–L88, Bibcode:1975ApJ...198L..85K, doi:10.1086/181818
  154. Bizzocchi, L.; Prudenzano, D.; Rivilla, V. M.; Pietropolli-Charmet, A.; Giuliano, B. M.; Caselli, P.; Martín-Pintado, J.; Jiménez-Serra, I.; Martín, S.; Requena-Torres, M. A.; Rico-Villas, F. (2020-08-01). "Propargylimine in the laboratory and in space: millimetre-wave spectroscopy and its first detection in the ISM". Astronomy & Astrophysics. 640: A98. arXiv: 2006.08401 . Bibcode:2020A&A...640A..98B. doi:10.1051/0004-6361/202038083. ISSN   0004-6361. S2CID   219687234.
  155. McCarthy, M. C.; et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal, 652 (2): L141–L144, Bibcode:2006ApJ...652L.141M, doi: 10.1086/510238 , S2CID   123232090
  156. Xue, Ci; Willis, Eric R.; Loomis, Ryan A.; Kelvin Lee, Kin Long; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Charnley, Steven B.; Cordiner, Martin A.; Kalenskii, Sergei; McCarthy, Michael C.; Herbst, Eric; Remijan, Anthony J.; McGuire, Brett A. (2020). "Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions". The Astrophysical Journal. 900 (1): L9. arXiv: 2008.12345 . Bibcode:2020ApJ...900L...9X. doi:10.3847/2041-8213/aba631. S2CID   221370815.
  157. McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C (2017). "Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope". The Astrophysical Journal . 843 (2): L28. arXiv: 1706.09766 . Bibcode:2017ApJ...843L..28M. doi:10.3847/2041-8213/aa7ca3. S2CID   119189492.
  158. Halfen, D. T.; et al. (2015), "Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets", Astrophysical Journal, 812 (1): L5, arXiv: 1509.09305 , Bibcode:2015ApJ...812L...5H, doi:10.1088/2041-8205/812/1/L5, S2CID   119191839
  159. Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. (2019). "First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium". Monthly Notices of the Royal Astronomical Society: Letters. 484 (1): L43–L48. arXiv: 1901.02576 . Bibcode:2019MNRAS.484L..43Z. doi:10.1093/mnrasl/slz002. S2CID   119382820.
  160. 1 2 Mehringer, David M.; et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters, 480 (1): L71, Bibcode:1997ApJ...480L..71M, doi: 10.1086/310612
  161. 1 2 Lovas, F. J.; et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters, 637 (1): L37–L40, Bibcode:2006ApJ...637L..37L, doi: 10.1086/500431