Ethanolamine

Last updated
Ethanolamine
Structural formula of monoethanolamine.svg
Ethanolamine 3D ball.png
Names
Preferred IUPAC name
2-Aminoethan-1-ol [1]
Other names
  • 2-Aminoethanol
  • 2-Amino-1-ethanol
  • Ethanolamine (not recommended [1] )
  • Monoethanolamine
  • β-Aminoethanol
  • β-hydroxyethylamine
  • β-Aminoethyl alcohol
  • Glycinol
  • Olamine
  • MEA
  • Ethylolamine
  • 2-Hydroxyethylamine
  • Colamine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.004.986 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-483-3
KEGG
PubChem CID
RTECS number
  • KJ5775000
UNII
  • InChI=1S/C2H7NO/c3-1-2-4/h4H,1-3H2 Yes check.svgY
    Key: HZAXFHJVJLSVMW-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2H7NO/c3-1-2-4/h4H,1-3H2
    Key: HZAXFHJVJLSVMW-UHFFFAOYAD
  • NCCO
Properties
C2H7NO
Molar mass 61.084 g·mol−1
AppearanceViscous colourless liquid
Odor Unpleasant ammonia-like odour
Density 1.0117 g/cm3
Melting point 10.3 °C (50.5 °F; 283.4 K)
Boiling point 170 °C (338 °F; 443 K)
Miscible
Vapor pressure 64 Pa (20 °C) [2]
Acidity (pKa)9.50 [3]
1.4539 (20 °C) [4]
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H314, H332, H335, H412 [5]
P261, P273, P303+P361+P353, P305+P351+P338 [5]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
2
0
Flash point 85 °C (185 °F; 358 K) (closed cup)
410 °C (770 °F; 683 K)
Explosive limits 5.5–17%
Lethal dose or concentration (LD, LC):
  • 3320 mg/kg (rat, oral)
  • 620 mg/kg (guinea pig, oral)
  • 2050 mg/kg (rat, oral)
  • 1475 mg/kg (mouse, oral)
  • 1000 mg/kg (rabbit, oral)
  • 700 mg/kg (mouse, oral)
  • 1720–1970 mg/kg (rat, oral) [6]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA: 3 ppm (6 mg/m3) [7]
REL (Recommended)
  • TWA: 3 ppm (8 mg/m3)
  • ST: 6 ppm (15 mg/m3) [7]
IDLH (Immediate danger)
30 ppm [7]
Safety data sheet (SDS)Sigma [5]
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Ethanolamine (2-aminoethanol, monoethanolamine, ETA, or MEA) is a naturally occurring organic chemical compound with the formula HOCH
2
CH
2
NH
2
or C
2
H
7
NO
. [8] The molecule is bifunctional, containing both a primary amine and a primary alcohol. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia. [9]

Contents

Ethanolamine is commonly called monoethanolamine or MEA in order to be distinguished from diethanolamine (DEA) and triethanolamine (TEA). The ethanolamines comprise a group of amino alcohols. A class of antihistamines is identified as ethanolamines, which includes carbinoxamine, clemastine, dimenhydrinate, chlorphenoxamine, diphenhydramine and doxylamine. [10]

Ethanolamine in Nature

ETA molecules are a component in the formation of cellular membranes and are thus a molecular building block for life. Ethanolamine is the second-most-abundant head group for phospholipids, substances found in biological membranes (particularly those of prokaryotes); e.g., phosphatidylethanolamine. It is also used in messenger molecules such as palmitoylethanolamide, which has an effect on CB1 receptors. [11]

ETA was thought to exist only on Earth and on certain asteroids, but in 2021 evidence was found that ETA molecules exist in interstellar space. [12]

Ethanolamine is biosynthesized by decarboxylation of serine: [13]

HOCH
2
CH(CO
2
H)NH
2
HOCH
2
CH
2
NH
2
+ CO2

Derivatives of ethanolamine are widespread in nature; e.g., lipids, as precursor of a variety of N-acylethanolamines (NAEs), that modulate several animal and plant physiological processes such as seed germination, plant–pathogen interactions, chloroplast development and flowering, [14] as well as precursor, combined with arachidonic acid C
20
H
32
O
2
20:4, ω-6), to form the endocannabinoid anandamide (AEA: C
22
H
37
NO
2
; 20:4, ω-6). [15]

ETA is biodegraded by ethanolamine ammonia-lyase, a B12-dependent enzyme. It is converted to acetaldehyde and ammonia via initial H-atom abstraction. [16]

H2NCH2CH2OH → NH3 + CH3CHO

Industrial production

Monoethanolamine is produced by treating ethylene oxide with aqueous ammonia; the reaction also produces diethanolamine and triethanolamine. The ratio of the products can be controlled by the stoichiometry of the reactants. [17]

Reaction of ethylene oxide with ammonia.png

Applications

MEA is used as feedstock in the production of detergents, emulsifiers, polishes, pharmaceuticals, corrosion inhibitors, and chemical intermediates. [9]

For example, reacting ethanolamine with ammonia gives ethylenediamine, a precursor of the commonly used chelating agent, EDTA. [17]

En from ethanolamine.png

Gas stream scrubbing

Monoethanolamines can scrub combusted-coal, combusted-methane and combusted-biogas flue emissions of carbon dioxide (CO2) very efficiently. MEA carbon dioxide scrubbing is also used to regenerate the air on submarines.

Solutions of MEA in water are used as a gas stream scrubbing liquid in amine treaters. [18] For example, aqueous MEA is used to remove carbon dioxide (CO2) and hydrogen sulfide (H2S) from various gas streams; e.g., flue gas and sour natural gas. [19] The MEA ionizes dissolved acidic compounds, making them polar and considerably more soluble.

MEA scrubbing solutions can be recycled through a regeneration unit. When heated, MEA, being a rather weak base, will release dissolved H2S or CO2 gas resulting in a pure MEA solution. [17] [20]

Other uses

In pharmaceutical formulations, MEA is used primarily for buffering or preparation of emulsions. MEA can be used as pH regulator in cosmetics. [21]

It is an injectable sclerosant as a treatment option of symptomatic hemorrhoids. 2–5 ml of ethanolamine oleate can be injected into the mucosa just above the hemorrhoids to cause ulceration and mucosal fixation thus preventing hemorrhoids from descending out of the anal canal.

It is also an ingredient in cleaning fluid for automobile windshields. [22]

pH-control amine

Ethanolamine is often used for alkalinization of water in steam cycles of power plants, including nuclear power plants with pressurized water reactors. This alkalinization is performed to control corrosion of metal components. ETA (or sometimes a similar organic amine; e.g., morpholine) is selected because it does not accumulate in steam generators (boilers) and crevices due to its volatility, but rather distributes relatively uniformly throughout the entire steam cycle. In such application, ETA is a key ingredient of so-called "all-volatile treatment" of water (AVT).[ citation needed ]

Reactions

Upon reaction with carbon dioxide, 2 equivalents of ethanolamine react through the intermediacy of carbonic acid to form a carbamate salt, [23] which when heated reforms ethanolamine and carbon dioxide.

Related Research Articles

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

Urea, also called carbamide, is an organic compound with chemical formula CO(NH2)2. This amide has two amino groups joined by a carbonyl functional group. It is thus the simplest amide of carbamic acid.

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

<span class="mw-page-title-main">Carbamate</span> Chemical group (>N–C(=O)–O–)

In organic chemistry, a carbamate is a category of organic compounds with the general formula R2NC(O)OR and structure >N−C(=O)−O−, which are formally derived from carbamic acid. The term includes organic compounds, formally obtained by replacing one or more of the hydrogen atoms by other organic functional groups; as well as salts with the carbamate anion H2NCOO.

<i>N</i>-Methylethanolamine Chemical compound

N-Methylethanolamine is an alkanolamine with the formula CH3NHCH2CH2OH. It is flammable, corrosive, colorless, viscous liquid. It is an intermediate in the biosynthesis of choline.

<span class="mw-page-title-main">Piperazine</span> Chemical compound

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. Piperazine exists as small alkaline deliquescent crystals with a saline taste.

Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is also abbreviated TEA, yet this abbreviation must be used carefully to avoid confusion with triethanolamine or tetraethylammonium, for which TEA is also a common abbreviation. It is a colourless volatile liquid with a strong fishy odor reminiscent of ammonia. Like diisopropylethylamine (Hünig's base), triethylamine is commonly employed in organic synthesis, usually as a base.

Amine gas treating, also known as amine scrubbing, gas sweetening and acid gas removal, refers to a group of processes that use aqueous solutions of various alkylamines (commonly referred to simply as amines) to remove hydrogen sulfide (H2S) and carbon dioxide (CO2) from gases. It is a common unit process used in refineries, and is also used in petrochemical plants, natural gas processing plants and other industries.

<span class="mw-page-title-main">Dimethylamine</span> Chemical compound

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Diethanolamine</span> Chemical compound

Diethanolamine, often abbreviated as DEA or DEOA, is an organic compound with the formula HN(CH2CH2OH)2. Pure diethanolamine is a white solid at room temperature, but its tendencies to absorb water and to supercool meaning that it is often encountered as a colorless, viscous liquid. Diethanolamine is polyfunctional, being a secondary amine and a diol. Like other organic amines, diethanolamine acts as a weak base. Reflecting the hydrophilic character of the secondary amine and hydroxyl groups, DEA is soluble in water. Amides prepared from DEA are often also hydrophilic. In 2013, the chemical was classified by the International Agency for Research on Cancer as "possibly carcinogenic to humans" (Group 2B).

<span class="mw-page-title-main">Triethanolamine</span> Chemical compound

Triethanolamine, or TEOA, is an organic compound with the chemical formula N(CH2CH2OH)3. It is a colourless, viscous liquid. It is both a tertiary amine and a triol. A triol is a molecule with three alcohol groups. Approximately 150,000 tonnes were produced in 1999. It is a colourless compound although samples may appear yellow because of impurities.

Carbamic acid, which might also be called aminoformic acid or aminocarboxylic acid, is the chemical compound with the formula H2NCOOH. It can be obtained by the reaction of ammonia NH3 and carbon dioxide CO2 at very low temperatures, which also yields ammonium carbamate [NH4]+[NH2CO2]. The compound is stable only up to about 250 K (−23 °C); at higher temperatures it decomposes into those two gases. The solid apparently consists of dimers, with the two molecules connected by hydrogen bonds between the two carboxyl groups –COOH.

<span class="mw-page-title-main">Aminoethylpiperazine</span> Chemical compound

Aminoethylpiperazine (AEP) is a derivative of piperazine. This ethyleneamine contains three nitrogen atoms; one primary, one secondary and one tertiary. It is a corrosive organic liquid and can cause second or third degree burns. Aminoethylpiperazine can also cause pulmonary edema as a result of inhalation. It is REACH and TSCA registered.

<span class="mw-page-title-main">Carbon dioxide scrubber</span> Device which absorbs carbon dioxide from circulated gas

A carbon dioxide scrubber is a piece of equipment that absorbs carbon dioxide (CO2). It is used to treat exhaust gases from industrial plants or from exhaled air in life support systems such as rebreathers or in spacecraft, submersible craft or airtight chambers. Carbon dioxide scrubbers are also used in controlled atmosphere (CA) storage. They have also been researched for carbon capture and storage as a means of combating climate change.

<span class="mw-page-title-main">Methyldiethanolamine</span> Chemical compound

Methyldiethanolamine, also known as N-methyl diethanolamine and more commonly as MDEA, is the organic compound with the formula CH3N(C2H4OH)2. It is a colorless liquid with an ammonia odor. It is miscible with water, ethanol and benzene. A tertiary amine, it is widely used as a sweetening agent in chemical, oil refinery, syngas production and natural gas.

A biogas upgrader is a facility that is used to concentrate the methane in biogas to natural gas standards. The system removes carbon dioxide, hydrogen sulphide, water and contaminants from the biogas. One technique for doing this uses amine gas treating. This purified biogas is also called biomethane. It can be used interchangeably with natural gas.

<span class="mw-page-title-main">Diethylethanolamine</span> Chemical compound

Diethylethanolamine (DEAE) is the organic compound with the molecular formula (C2H5)2NCH2CH2OH. A colorless liquid, is used as a precursor in the production of a variety of chemical commodities such as the local anesthetic procaine.

<span class="mw-page-title-main">Ammonium carbamate</span> Chemical compound

Ammonium carbamate is a chemical compound with the formula [NH4][H2NCO2] consisting of ammonium cation NH+4 and carbamate anion NH2COO. It is a white solid that is extremely soluble in water, less so in alcohol. Ammonium carbamate can be formed by the reaction of ammonia NH3 with carbon dioxide CO2, and will slowly decompose to those gases at ordinary temperatures and pressures. It is an intermediate in the industrial synthesis of urea (NH2)2CO, an important fertilizer.

<span class="mw-page-title-main">Dry ice color show</span> Chemical demonstration

The dry ice color show is a demonstration of the chemical formation of carbonic acid by the dissolution of dry ice in water. The dry ice color show is usually performed in classrooms to demonstrate the properties of acids and bases, their effect on pH indicators, and the sublimation of dry ice. Setup is simple and generally involves only minor hazards, the main one being the low temperature of dry ice, which can cause frostbite upon skin contact. The carbonic acid formed in the demonstration is a weak acid and is not hazardous, being present in numerous consumer products including tonic water, soda, and beer.

References

  1. 1 2 Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. 649, 717. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4. For example, the name 'ethanolamine', which is still widely used, is badly constructed because of the presence of two suffixes; it is not an alternative to the preferred IUPAC name, '2-aminoethan-1-ol'.
  2. "Ethanolamine MSDS" (PDF). Acros Organics. Archived from the original (PDF) on 2011-07-15.
  3. Hall, H.K. (1957). "Correlation of the Base Strengths of Amines". J. Am. Chem. Soc. 79 (20): 5441–4. doi:10.1021/ja01577a030.
  4. Reitmeier, R.E.; Sivertz, V.; Tartar, H.V. (1940). "Some Properties of Monoethanolamine and its Aqueous Solutions". Journal of the American Chemical Society. 62 (8): 1943–44. doi:10.1021/ja01865a009.
  5. 1 2 3 Sigma-Aldrich Co., Ethanolamine. Retrieved on 2018-05-24.
  6. "Ethanolamine". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  7. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0256". National Institute for Occupational Safety and Health (NIOSH).
  8. "National Library of Medicine. PubChem. Ethanolomine". NIH, National Library of Medicine. Retrieved September 5, 2021.
  9. 1 2 Martin Ernst; Johann-Peter Melder; Franz Ingo Berger; Christian Koch (2022). "Ethanolamines and Propanolamines". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_001.pub2.
  10. Cough, Cold, and Allergy Preparation Toxicity at eMedicine
  11. Calignano, A; La Rana, G; Piomelli, D (2001). "Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide". European Journal of Pharmacology. 419 (2–3): 191–8. doi:10.1016/S0014-2999(01)00988-8. PMID   11426841.
  12. "First evidence of cell membrane molecules in space". Astronomy Magazine. May 28, 2021. Retrieved September 4, 2021.
  13. "Phosphatidylethanolamine and related lipids". AOCS. Archived from the original on 2012-08-21. Retrieved 2015-08-09.
  14. Coutinho, Bruna G.; Mevers, Emily; Schaefer, Amy L.; Pelletier, Dale A.; Harwood, Caroline S.; Clardy, Jon; Greenberg, E. Peter (2018-09-25). "A plant-responsive bacterial-signaling system senses an ethanolamine derivative". Proceedings of the National Academy of Sciences of the United States of America. 115 (39): 9785–9790. Bibcode:2018PNAS..115.9785C. doi: 10.1073/pnas.1809611115 . ISSN   0027-8424. PMC   6166808 . PMID   30190434.
  15. Marzo, V. Di; Petrocellis, L. De; Sepe, N.; Buono, A. (1996-06-15). "Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells". Biochemical Journal. 316 (Pt 3): 977–84. doi:10.1042/bj3160977. PMC   1217444 . PMID   8670178.
  16. Shibata, Naoki; Tamagaki, Hiroko; Hieda, Naoki; Akita, Keita; Komori, Hirofumi; Shomura, Yasuhito; Terawaki, Shin-Ichi; Mori, Koichi; Yasuoka, Noritake; Higuchi, Yoshiki; Toraya, Tetsuo (2010). "Crystal Structures of Ethanolamine Ammonia-lyase Complexed with Coenzyme B12 Analogs and Substrates". Journal of Biological Chemistry. 285 (34): 26484–26493. doi: 10.1074/jbc.M110.125112 . PMC   2924083 . PMID   20519496.
  17. 1 2 3 Weissermel, Klaus; Arpe, Hans-Jürgen; Lindley, Charlet R.; Hawkins, Stephen (2003). "Chap. 7. Oxidation Products of Ethylene". Industrial Organic Chemistry. Wiley-VCH. pp. 159–161. ISBN   3-527-30578-5.
  18. Chremos A, et al. (August 2015). "Modelling the phase and chemical equilibria of aqueous solutions of alkanolamines and carbon dioxide using the SAFT-γ SW group contribution approach". Fluid Phase Equilibria. 407: 280. doi: 10.1016/j.fluid.2015.07.052 . hdl: 10044/1/25382 .
  19. Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants. 2007. doi:10.17226/11170. ISBN   978-0-309-09225-8.
  20. "Ethanolamine". Occupational Safety & Health Administration. Archived from the original on 2013-05-03. Retrieved 2008-05-11.
  21. Carrasco, F. (2009). "Ingredientes Cosméticos". Diccionario de Ingredientes Cosméticos 4ª Ed. www.imagenpersonal.net. p. 306. ISBN   978-84-613-4979-1.
  22. Federal Motor Vehicle Safety Standards. U.S. Department of Transportation, National Highway Traffic Safety Administration. 1994. p. Part 571; S 108—PRE 128.
  23. Lu, Yanyue; Liao, Anping; Yun, Zhuge; Liang, Yanqing; Yao, Qinmei (2014). "Absorption of Carbon Dioxide in Ethanolamine Solutions". Asian Journal of Chemistry. 26 (1): 39–42. doi: 10.14233/ajchem.2014.15301 .