| |||
![]() | |||
![]() | |||
Names | |||
---|---|---|---|
IUPAC name Propionaldehyde | |||
Preferred IUPAC name Propanal | |||
Other names
| |||
Identifiers | |||
3D model (JSmol) | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.004.204 | ||
EC Number |
| ||
KEGG | |||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 1275 | ||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
C3H6O | |||
Molar mass | 58.080 g·mol−1 | ||
Appearance | Colourless liquid | ||
Odor | Pungent and fruity | ||
Density | 0.81 g cm−3 | ||
Melting point | −81 °C (−114 °F; 192 K) | ||
Boiling point | 46 to 50 °C (115 to 122 °F; 319 to 323 K) | ||
20 g/100 mL | |||
-34.32·10−6 cm3/mol | |||
Viscosity | 0.6 cP at 20 °C | ||
Structure | |||
C1, O: sp2 C2, C3: sp3 | |||
2.52 D | |||
Hazards | |||
GHS labelling: | |||
![]() ![]() ![]() | |||
Danger | |||
H225, H302, H315, H318, H332, H335 [1] | |||
P210, P261, P280, P304+P340+P312, P305+P351+P338, P310, P403+P235 [1] | |||
NFPA 704 (fire diamond) | |||
Flash point | −26 °C (−15 °F; 247 K) | ||
175 °C (347 °F; 448 K) | |||
Related compounds | |||
Related aldehydes | Acetaldehyde Butyraldehyde | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Propionaldehyde or propanal is the organic compound with the formula CH3CH2CHO. It is the 3-carbon aldehyde. It is a colourless, flammable liquid with a pungent and fruity odour. It is produced on a large scale industrially.
Propionaldehyde is mainly produced industrially by hydroformylation of ethylene:
In this way, several hundred thousand tons are produced annually. [2]
Propionaldehyde may also be prepared by oxidizing 1-propanol with a mixture of sulfuric acid and potassium dichromate. The reflux condenser contains water heated at 60 °C, which condenses unreacted propanol, but allows propionaldehyde to pass. The propionaldehyde vapor is immediately condensed into a suitable receiver. In this arrangement, any propionaldehyde formed is immediately removed from the reactor, thus it does not get over-oxidized to propionic acid. [3]
Propionaldehyde exhibits the reactions characteristic of alkyl aldehydes, e.g. hydrogenation, aldol condensations, oxidations, etc. It is the simplest aldehyde with a prochiral methylene such that α-functionalized derivatives (CH3CH(X)CHO) are chiral. If water is available, propionaldehyde exists in equilibrium with 1,1-propanediol, a geminal diol.
Both industrially and in the laboratory, propionaldehyde has primary application as a chemical building block. [2] : 4 [4]
It is predominantly used as a precursor to trimethylolethane (CH3C(CH2OH)3) through a condensation reaction with formaldehyde. This triol is an important intermediate in the production of alkyd resins. It is used in the synthesis of several common aroma compounds (cyclamen aldehyde, helional, lilial). [2]
Reduction of propionaldehyde gives n‑propanol, and reductive amination gives propanamine. Rising demand for non-chlorocarbon solvents has caused some manufacturers to substitutively brominate n‑propanol to propyl bromide. However, the majority of applications use n‑propanol proper in esters or glycol ethers, or as a gentle alkylant for primary and secondary amines. [2] : 5
Oxidants instead give propionic acid and propionates, typically used as preservatives. [2] : 5
Many laboratory uses exploit its participation in condensation reactions. [5] [ better source needed ] With tert-butylamine it gives CH3CH2CH=N-t-Bu, a three-carbon building block used in organic synthesis. [6]
Propionaldehyde along with acrolein has been detected in the molecular cloud Sagittarius B2 near the center of the Milky Way Galaxy, about 26,000 light years from Earth. [7] [8] [9]
Measurements by the COSAC and Ptolemy instruments on comet 67/P 's surface, revealed sixteen organic compounds, four of which were seen for the first time on a comet, including acetamide, acetone, methyl isocyanate and propionaldehyde. [10] [11] [12]
With an LD50 of 1690 mg/kg (oral), [2] propionaldehyde exhibits low acute toxicity, but is a lung and eye irritant and is a combustible liquid.
In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.
Hydrazones are a class of organic compounds with the structure R1R2C=N−NH2. They are related to ketones and aldehydes by the replacement of the oxygen =O with the =N−NH2 functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.
In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.
A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol may also be called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. They are used as protecting groups of carbonyl groups, making them essential in synthesis of organic chemistry.
In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.
In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.
Acetamide (systematic name: ethanamide) is an organic compound with the formula CH3CONH2. It is an amide derived from ammonia and acetic acid. It finds some use as a plasticizer and as an industrial solvent. The related compound N,N-dimethylacetamide (DMA) is more widely used, but it is not prepared from acetamide. Acetamide can be considered an intermediate between acetone, which has two methyl (CH3) groups either side of the carbonyl (CO), and urea which has two amide (NH2) groups in those locations. Acetamide is also a naturally occurring mineral with the IMA symbol: Ace.
In organic chemistry, the Knoevenagel condensation reaction is a type of chemical reaction named after German chemist Emil Knoevenagel. It is a modification of the aldol condensation.
The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. Modified versions of which were subsequently refined and published in Organic Syntheses.
Potassium peroxymonosulfate is widely used as an oxidizing agent, for example, in pools and spas. It is the potassium salt of peroxymonosulfuric acid. Potassium peroxymonosulfate per se is rarely encountered. It is often confused with the triple salt 2KHSO5·KHSO4·K2SO4, known as Oxone.
In organic chemistry, an iminium cation is a polyatomic ion with the general structure [R1R2C=NR3R4]+. They are common in synthetic chemistry and biology.
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).
o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.
1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.
1-Propanol is a primary alcohol with the formula CH3CH2CH2OH and sometimes represented as PrOH or n-PrOH. It is a colourless liquid and an isomer of 2-propanol. 1-Propanol is used as a solvent in the pharmaceutical industry, mainly for resins and cellulose esters, and, sometimes, as a disinfecting agent.
Salicylic aldehyde (2-hydroxybenzaldehyde) is an organic compound with the formula C6H4OH(CHO). Along with 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde, it is one of the three isomers of hydroxybenzaldehyde. This colorless oily liquid has a bitter almond odor at higher concentration. Salicylaldehyde is a precursor to coumarin and a variety of chelating agents.
Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.
Isovaleraldehyde organic compound, also known as 3-methylbutanal, with the formula (CH3)2CHCH2CHO. It is an aldehyde, a colorless liquid at STP, and found in low concentrations in many types of food. Commercially it is used as a reagent for the production of pharmaceuticals, perfumes and pesticides.
Hydroxymethylation is a chemical reaction that installs the CH2OH group. The transformation can be implemented in many ways and applies to both industrial and biochemical processes.
Ferrocenecarboxaldehyde is the organoiron compound with the formula (C5H5)Fe(C5HCHO). The molecule consists of ferrocene substituted by an formyl group on one of the cyclopentadienyl rings. It is an orange, air-stable solid that is soluble in organic solvents.