Acetamide

Last updated
Acetamide
Acetamide skeletal.svg
Acetamide-3D-balls.png
Names
Preferred IUPAC name
Acetamide [1]
Systematic IUPAC name
Ethanamide
Other names
Acetic acid amide
Acetylamine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.430 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-473-5
KEGG
PubChem CID
RTECS number
  • AB4025000
UNII
  • InChI=1S/C2H5NO/c1-2(3)4/h1H3,(H2,3,4) Yes check.svgY
    Key: DLFVBJFMPXGRIB-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2H5NO/c1-2(3)4/h1H3,(H2,3,4)
    Key: DLFVBJFMPXGRIB-UHFFFAOYAC
  • O=C(N)C
Properties
C2H5NO
Molar mass 59.068 g·mol−1
Appearancecolorless, hygroscopic solid
Odor odorless
mouse-like with impurities
Density 1.159 g cm3
Melting point 79 to 81 °C (174 to 178 °F; 352 to 354 K)
Boiling point 221.2 °C (430.2 °F; 494.3 K) (decomposes)
2000 g L1 [2]
Solubility ethanol 500 g L1 [2]
pyridine 166.67 g L1 [2]
soluble in chloroform, glycerol, benzene [2]
log P 1.26
Vapor pressure 1.3 Pa
Acidity (pKa)15.1 (25 °C, H2O) [3]
0.577 × 10−6 cm3 g1
1.4274
Viscosity 2.052 cP (91 °C)
Structure
trigonal
Thermochemistry [4]
91.3 J·mol−1·K−1
Std molar
entropy
(S298)
115.0 J·mol−1·K−1
−317.0 kJ·mol−1
Hazards
GHS labelling:
GHS-pictogram-silhouette.svg
Warning
H351
P201, P202, P281, P308+P313, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3
1
1
Flash point 126 °C (259 °F; 399 K)
Lethal dose or concentration (LD, LC):
7000 mg kg1 (rat, oral)
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Acetamide (systematic name: ethanamide) is an organic compound with the formula CH3CONH2. It is derived from acetic acid. It finds some use as a plasticizer and as an industrial solvent. [5] The related compound N,N-dimethylacetamide (DMA) is more widely used, but it is not prepared from acetamide. Acetamide can be considered an intermediate between acetone, which has two methyl (CH3) groups either side of the carbonyl (CO), and urea which has two amide (NH2) groups in those locations. Acetamide is also a naturally occurring mineral [6] with the IMA symbol: Ace. [7]

Contents

Production

Structure of acetamide hydrogen-bonded dimer from X-ray crystallography. Selected distances: C-O: 1.243, C-N, 1.325, N---O, 2.925 A. Color code: red = O, blue = N, gray = C, white = H. CSD CIF ACEMID06.jpg
Structure of acetamide hydrogen-bonded dimer from X-ray crystallography. Selected distances: C-O: 1.243, C-N, 1.325, N---O, 2.925 Å. Color code: red = O, blue = N, gray = C, white = H.

Laboratory scale

Acetamide can be produced in the laboratory from ammonium acetate by dehydration: [9]

[NH4][CH3CO2] → CH3C(O)NH2 + H2O

Alternatively acetamide can be obtained in excellent yield via ammonolysis of acetylacetone under conditions commonly used in reductive amination. [10]

It can also be made from anhydrous acetic acid, acetonitrile and very well dried hydrogen chloride gas, using an ice bath, alongside more valuable reagent acetyl chloride. Yield is typically low (up to 35%), and the acetamide made this way is generated as a salt with HCl.

Industrial scale

In a similar fashion to some laboratory methods, acetamide is produced by dehydrating ammonium acetate or via the hydration of acetonitrile, a byproduct of the production of acrylonitrile: [5]

CH3CN + H2O → CH3C(O)NH2

Uses

Acetamide is used as a plasticizer and an industrial solvent. [5] Molten acetamide is good solvent with a broad range of applicability. Notably, its dielectric constant is higher than most organic solvents, allowing it to dissolve inorganic compounds with solubilities closely analogous to that of water. [11] Acetamide has uses in electrochemistry and the organic synthesis of pharmaceuticals, pesticides, and antioxidants for plastics. [12] It is a precursor to thioacetamide. [13]

Occurrence

Acetamide has been detected near the center of the Milky Way galaxy. [14] This finding is potentially significant because acetamide has an amide bond, similar to the essential bond between amino acids in proteins. This finding lends support to the theory that organic molecules that can lead to life (as we know it on Earth) can form in space.

On 30 July 2015, scientists reported that upon the first touchdown of the Philae lander on comet 67/P 's surface, measurements by the COSAC and Ptolemy instruments revealed sixteen organic compounds, four of which acetamide, acetone, methyl isocyanate, and propionaldehyde [15] [16] [17] were seen for the first time on a comet.

In addition, acetamide is found infrequently on burning coal dumps, as a mineral of the same name. [18] [19]

Related Research Articles

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is a functional group with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923. The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H+). This theory generalises the Arrhenius theory.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Acetylacetone</span> Chemical compound

Acetylacetone is an organic compound with the chemical formula CH3COCH2COCH3. It is a colorless liquid, classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3C(O)CH=C(OH)CH3. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications. It is a colorless liquid that is a precursor to acetylacetonate anion, a bidentate ligand. It is also a building block for the synthesis of heterocyclic compounds.

<span class="mw-page-title-main">Organic acid anhydride</span> Any chemical compound having two acyl groups bonded to the same oxygen atom

An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").

<span class="mw-page-title-main">Acetone</span> Organic compound ((CH3)2CO); simplest ketone

Acetone, is an organic compound with the formula (CH3)2CO. It is the simplest and smallest ketone. It is a colorless, highly volatile and flammable liquid with a characteristic pungent odor.

<span class="mw-page-title-main">Dimethylacetamide</span> Chemical compound

Dimethylacetamide (DMAc or DMA) is the organic compound with the formula CH3C(O)N(CH3)2. This colorless, water-miscible, high-boiling liquid is commonly used as a polar solvent in organic synthesis. DMA is miscible with most other solvents, although it is poorly soluble in aliphatic hydrocarbons.

<span class="mw-page-title-main">Ethyl acetoacetate</span> Chemical compound

The organic compound ethyl acetoacetate (EAA) is the ethyl ester of acetoacetic acid. It is a colorless liquid. It is widely used as a chemical intermediate in the production of a wide variety of compounds. It is used as a flavoring for food.

<span class="mw-page-title-main">Ammonium acetate</span> Chemical compound

Ammonium acetate, also known as spirit of Mindererus in aqueous solution, is a chemical compound with the formula NH4CH3CO2. It is a white, hygroscopic solid and can be derived from the reaction of ammonia and acetic acid. It is available commercially.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

<span class="mw-page-title-main">Thioacetamide</span> Chemical compound

Thioacetamide is an organosulfur compound with the formula C2H5NS. This white crystalline solid is soluble in water and serves as a source of sulfide ions in the synthesis of organic and inorganic compounds. It is a prototypical thioamide.

<span class="mw-page-title-main">Triflic acid</span> Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

In chemistry, aminolysis (/am·i·nol·y·sis/) is any chemical reaction in which a molecule is lysed by reacting with ammonia or an amine. The case where the reaction involves ammonia may be more specifically referred to as ammonolysis.

<span class="mw-page-title-main">Thioacetic acid</span> Organosulfur compound (CH3C(O)SH)

Thioacetic acid is an organosulfur compound with the molecular formula CH3C(O)SH. It is the sulfur analogue of acetic acid, as implied by the thio- prefix. It is a yellow liquid with a strong thiol-like odor. It is used in organic synthesis for the introduction of thiol groups in molecules.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water and other trace elements.

<span class="mw-page-title-main">Propionaldehyde</span> Chemical compound

Propionaldehyde or propanal is the organic compound with the formula CH3CH2CHO. It is the 3-carbon aldehyde. It is a colourless, flammable liquid with a slightly fruity odour. It is produced on a large scale industrially.

<span class="mw-page-title-main">Acetyl hypochlorite</span> Chemical compound

Acetyl hypochlorite, also known as chlorine acetate, is a chemical compound with the formula CH3COOCl. It is a photosensitive colorless liquid that is a short lived intermediate in the Hunsdiecker reaction.

References

  1. "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 841. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  2. 1 2 3 4 The Merck Index , 14th Edition, 36
  3. Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. pp. 5–88. ISBN   9781498754293.
  4. John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99th ed.). CRC Press. pp. 5–3. ISBN   978-1138561632.
  5. 1 2 3 "Acetic Acid". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_045.pub2.
  6. Mindat: Naturally occurring acetamide
  7. Warr, L.N. (2021). "IMA-CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  8. Bats, Jan W.; Haberecht, Monika C.; Wagner, Matthias (2003). "A new refinement of the orthorhombic polymorph of acetamide". Acta Crystallographica Section e Structure Reports Online. 59 (10): o1483–o1485. doi:10.1107/S1600536803019494.
  9. Coleman, G. H.; Alvarado, A. M. (1923). "Acetamide". Organic Syntheses . 3: 3. doi:10.15227/orgsyn.003.0003.; Collective Volume, vol. 1, p. 3
  10. Schwoegler, Edward J.; Adkins, Homer (1939). "Preparation of Certain Amines". J. Am. Chem. Soc. 61 (12): 3499–3502. doi:10.1021/ja01267a081.
  11. Stafford, O. F. (1933). "Acetamide as a Solvent". J. Am. Chem. Soc. 55 (10): 3987–3988. doi:10.1021/ja01337a011.
  12. Wagner, Frank S. (2002). Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons. doi:10.1002/0471238961.0103052023010714.a02.pub2. ISBN   9780471238966.
  13. Schwarz, G. (1945). "2,4-Dimethylthiazole". Organic Syntheses . 25: 35.; Collective Volume, vol. 3, p. 332
  14. Hollis, J. M.; Lovas, F. J.; Remijan, A. J.; Jewell, P. R.; Ilyushin, V. V.; Kleiner, I. (2006). "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond". Astrophys. J. 643 (1): L25–L28. Bibcode:2006ApJ...643L..25H. doi: 10.1086/505110 .
  15. Jordans, Frank (30 July 2015). "Philae probe finds evidence that comets can be cosmic labs". The Washington Post. Associated Press. Archived from the original on 23 December 2018. Retrieved 30 July 2015.
  16. "Science on the Surface of a Comet". European Space Agency. 30 July 2015. Retrieved 30 July 2015.
  17. Bibring, J.-P.; Taylor, M.G.G.T.; Alexander, C.; Auster, U.; Biele, J.; Finzi, A. Ercoli; Goesmann, F.; Klingehoefer, G.; Kofman, W.; Mottola, S.; Seidenstiker, K.J.; Spohn, T.; Wright, I. (31 July 2015). "Philae's First Days on the Comet - Introduction to Special Issue". Science . 349 (6247): 493. Bibcode:2015Sci...349..493B. doi: 10.1126/science.aac5116 . PMID   26228139.
  18. "Acetamide". Mindat.org.
  19. "Acetamide" (PDF). Handbook of Mineralogy. RRUFF Project.