Plasticizer

Last updated

PVC, used extensively in sewage pipes, is only useful because of plasticizers. Laying sewer hi res (2).jpg
PVC, used extensively in sewage pipes, is only useful because of plasticizers.

A plasticizer (UK: plasticiser) is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture.

Contents

Plasticizers are commonly added to polymers and plastics and PVC, either to facilitate the handling of the raw material during fabrication, or to meet the demands of the end product's application. Plasticizers are especially key to the usability of polyvinyl chloride (PVC), the third most widely used plastic. In the absence of plasticizers, PVC is hard and brittle, with plasticizers it is suitable for products such as vinyl siding, roofing, vinyl flooring, rain gutters, plumbing, and electric wire insulation/coating. [1]

Plasticizers are also often added to concrete formulations to make them more workable and fluid for pouring, thus allowing the water contents to be reduced. Similarly, they are often added to clays, stucco, solid rocket fuel, and other pastes prior to molding and forming. For these applications, plasticizers largely overlap with dispersants.

For polymers

Europe's and Global Plasticiser Use by type 2017 EP Plasticisers Market 2017.png
Europe's and Global Plasticiser Use by type 2017
Europe's Plasticiser Use 2017 EP Graphs 2019-04 Europes Use.png
Europe's Plasticiser Use 2017
Europe's Plasticiser Market Trends 2017 EP 2017 Plasticiser Market trends.png
Europe's Plasticiser Market Trends 2017

Plasticizers for polymers are either liquids with low volatility or solids. According to 2017 data, the total global market for plasticizers was 7.5 million metric tonnes. In North America the 2017 volume was ~1.01 million metric tonnes and in Europe the figure was 1.35 million metric tonnes, split between various end-use applications with a chemical type trend moving to higher molecular weight (HMW) orthophthalates and alternative types following regulatory issues concerning lower molecular weight (LMW) orthophthalates.

Almost 90% of polymer plasticizers, most commonly phthalate esters, are used in PVC, giving this material improved flexibility and durability. [2] Other polymers which can contain high loadings of plasticizers include acrylates and cellulose-type plastics, such as cellulose acetate, nitrocellulose and cellulose acetate butyrate.

Mechanism of action

It was commonly thought that plasticizers work by embedding themselves between the chains of polymers, spacing them apart (increasing the "free volume"), [3] [4] or swelling them and thus significantly lowering the glass transition temperature for the plastic and making it softer. It was later shown that the free volume explanation could not account for all of the effects of plasticization. [5] The mobility of a polymer chain is more complex in the presence of plasticizer than what the Flory-Fox equation predicts for a simple polymer chain.

The molecules of plasticizer take control over mobility of the chain - a polymer chain does not show an increase of the free volume around polymer ends. If plasticizer/water creates hydrogen bonds with hydrophilic parts of the polymer, the associated free volume can be decreased. [ clarification needed ] [6]

The effect of plasticizers on elastic modulus is dependent on both temperature and plasticizer concentration. Below a certain concentration, referred to as the crossover concentration, a plasticizer can increase the modulus of a material. The material's glass transition temperature will decrease, however, at all concentrations. In addition to a crossover concentration, a crossover temperature exists. Below the crossover temperature the plasticizer will also increase the modulus.

Migration of plasticizers out of their host plastics leads to loss of flexibility, embrittlement, and cracking. This decades-old plastic lamp cord crumbles when flexed, due to loss of the plasticizers. Plastic lamp cord - brittle after 50 yrs.jpg
Migration of plasticizers out of their host plastics leads to loss of flexibility, embrittlement, and cracking. This decades-old plastic lamp cord crumbles when flexed, due to loss of the plasticizers.

Selection

Over the last 60 years more than 30,000 different substances have been evaluated for their suitability as polymer plasticizers. Of these, only a small number – approximately 50 – are today in commercial use. [7]

Ester plasticizers are selected based upon cost-performance evaluation. The rubber compounder must evaluate ester plasticizers for compatibility, processibility, permanence and other performance properties. The wide variety of ester chemistries that are in production include sebacates, adipates, terephthalates, dibenzoates, glutarates, phthalates, azelates, and other specialty blends. This broad product line provides an array of performance benefits required for the many elastomer applications such as tubing and hose products, flooring, wall-coverings, seals and gaskets, belts, wire and cable, and print rolls.

Low to high polarity esters provide utility in a wide range of elastomers including nitrile, polychloroprene, EPDM, chlorinated polyethylene, and epichlorohydrin. Plasticizer-elastomer interaction is governed by many factors such as solubility parameter, molecular weight, and chemical structure. Compatibility and performance attributes are key factors in developing a rubber formulation for a particular application. [8]

Plasticizers used in PVC and other plastics are often based on esters of polycarboxylic acids with linear or branched aliphatic alcohols of moderate chain length. These compounds are selected on the basis of many critieria including low toxicity, compatibility with the host material, nonvolatility, and expense. Phthalate esters of straight-chain and branched-chain alkyl alcohols meet these specifications and are common plasticizers. Ortho-phthalate esters have traditionally been the most dominant plasticizers, but regulatory concerns have led to the move away from classified substances to non-classified which includes high molecular weight ortho-phthalates and other plasticisers, especially in Europe.

Antiplasticizers

Antiplasticizers are polymer additives that have effect opposite to those of plasticizers. They increase the modulus while decreasing the glass transition temperature.

Bis(2-ethylhexyl) phthalate is a common plasticizer. Bis(2-ethylhexyl)phthalate.svg
Bis(2-ethylhexyl) phthalate is a common plasticizer.

Safety and toxicity

Substantial concerns have been expressed over the safety of some polymer plasticizers, especially because some low molecular weight ortho-phthalates have been classified as potential endocrine disruptors with some developmental toxicity reported. [9] Plasticizers can escape plastics due to migration and abrasion of the plastic since they are not bound to the polymer matrix. The "new car smell" is often attributed to plasticizers or their degradation products, [10] however, multiple studies on the makeup of the smell do not find phthalates in appreciable amounts, likely due to their extremely low volatility and vapor pressure. [11]

Common polymer plasticizers

Ortho phthalates

  • Phthalate-based plasticizers are used in situations where good resistance to water and oils is required. Some common phthalate plasticizers are:
  • Low Molecular Weight Ortho Phthalates
  • High Molecular Weight Ortho Phthalates
    • Diisononyl phthalate (DINP), used in flooring materials, found in garden hoses, shoes, toys, and building materials
    • Bis(2-propylheptyl) phthalate (DPHP), used in cables, wires and roofing materials
    • Diisodecyl phthalate (DIDP), used for insulation of wires and cables, car undercoating, shoes, carpets, pool liners
    • Diisoundecyl phthalate (DIUP), used for insulation of wires and cables, car undercoating, shoes, carpets, pool liners. Good high temperature and outdoor weathering performance
    • Ditridecyl phthalate (DTDP) is the highest molecular weight phthalate plasticizer, providing greater performance at high temperature. It is the preferred plasticizer for automotive cable and wire application.

Terephthalates

  • Terephthalates are isomeric with ortho phthalates but have proven to have cleaner toxicological results due to their inability to form stable monoesters during hydrolysis and metabolic breakdown.
    • Bis(2-ethylhexyl) terephthalate (DEHT; Dioctyl terephthalate, DOTP) (Eastman Chemical Company Trademark: Eastman 168™), used as a replacement for DEHP and DINP
    • Diisopentyl terephthalate (DiPT)(Evonik Industries Trademark: ELATUR® DPT), used as a replacement for DBP and DiBP
    • Dibutyl terephthalate (DBT)(Eastman Chemical Trademark: Eastman Effusion™), used as a replacement for DBP and DiBP

Trimellitates

Adipates & Sebacates

  • Adipate-based plasticizers are used for low-temperature or resistance to ultraviolet light. An example is:
  • Sebacate- based plasticizers provide excellent compatibility with a range of plastic materials and synthetic rubbers (specifically nitrile rubber and neoprene), superior properties at low temperatures, and good oil resistivity. Some examples are:

Organophosphates

Other

  • 1,2-Cyclohexane dicarboxylic acid diisononyl ester (BASF Trademark: Hexamoll DINCH)
  • Bis(2-ethylhexyl) cyclohexane-1,4-dicarboxylate (Hanwha Trademark: Eco-DEHCH)
  • Alkyl sulphonic acid phenyl ester (ASE). (Lanxess Chemical Trademark: Mesamoll)
  • Triethylene glycol di-2ethylhexanoate (Eastman Chemical Trademark: Eastman TEG-EH)

Bio-based plasticizers have been investigated, such as glycerol triacetate (Triacetin) and acetyltributylcitrate. They are used in niche applications. Epoxidized soybean oil is used broadly as a secondary plasticizer in many vinyl applications.

  • Note: Bisphenol A, or BPA, is not a plasticizer, [15] although it is often wrongly described as one.

For inorganic materials

Concrete

In the concrete technology, plasticizers and superplasticizers are also called high range water reducers. When added to concrete mixtures, they confer a number of properties including improved workability and strength. The strength of concrete is inversely proportional to the amount of water added, i.e., the water-cement (w/c) ratio. In order to produce stronger concrete, less water is added (without "starving" the mix), which makes the concrete mixture less workable and difficult to mix, necessitating the use of plasticizers, water reducers, superplasticizers, fluidizer or dispersants. [16]

Plasticizers are also often used when pozzolanic ash is added to concrete to improve strength. This method of mix proportioning is especially popular when producing high-strength concrete and fiber-reinforced concrete.

Adding 1-2% plasticizer per unit weight of cement is usually sufficient. Adding an excessive amount of plasticizer will result in excessive segregation of concrete and is not advisable. Depending on the particular chemical used, use of too much plasticizer may result in a retarding effect.

Plasticizers are commonly manufactured from lignosulfonates, a by-product from the paper industry. Superplasticizers have generally been manufactured from sulfonated naphthalene condensate or sulfonated melamine formaldehyde, although newer products based on polycarboxylic ethers are now available. Traditional lignosulfonate-based plasticisers, naphthalene and melamine sulfonate-based superplasticisers disperse the flocculated cement particles through a mechanism of electrostatic repulsion (see colloid). In normal plasticisers, the active substances are adsorbed on to the cement particles, giving them a negative charge, which leads to repulsion between particles. Lignin, naphthalene, and melamine sulfonate superplasticisers are organic polymers. The long molecules wrap themselves around the cement particles, giving them a highly negative charge so that they repel each other.

Polycarboxylate ether superplasticizer (PCE) or just polycarboxylate (PC), work differently from sulfonate-based superplasticizers, giving cement dispersion by steric stabilisation. This form of dispersion is more powerful in its effect and gives improved workability retention to the cementitious mix. [17]

Stucco

Plasticizers can be added to wallboard stucco mixtures to improve workability. In order to reduce the energy consumed drying wallboard, less water is added, which makes the gypsum mixture very unworkable and difficult to mix, necessitating the use of plasticizers, water reducers, or dispersants. Some studies also show that too much lignosulfonate dispersant could result in a set-retarding effect. Data showed that amorphous crystal formations occurred that detracted from the mechanical needle-like crystal interaction in the core, preventing a stronger core. The sugars, chelating agents in lignosulfonates such as aldonic acids and extractive compounds are mainly responsible for set retardation. These low range water reducing dispersants are commonly manufactured from lignosulfonates, a by-product from the paper industry.

High range superplasticizers (dispersants) have generally been manufactured from sulfonated naphthalene condensate, although polycarboxylic ethers represent more modern alternatives. Both of these high range water reducers are used at 1/2 to 1/3 of the lignosulfonate types. [18]

Traditional lignosulfonate and naphthalene sulfonate-based plasticisers disperse the flocculated gypsum particles through a mechanism of electrostatic repulsion (see Colloid). In normal plasticisers, the active substances are adsorbed on to the gypsum particles, giving them a negative charge, which leads to repulsion between particles. Lignin and naphthalene sulfonate plasticizers are organic polymers. The long molecules wrap themselves around the gypsum particles, giving them a highly negative charge so that they repel each other. [19]

Energetic materials

Energetic material pyrotechnic compositions, especially solid rocket propellants and smokeless powders for guns, often employ plasticizers to improve physical properties of the propellant binder or of the overall propellant, to provide a secondary fuel, and ideally, to improve specific energy yield (e.g. specific impulse, energy yield per gram of propellant, or similar indices) of the propellant. An energetic plasticizer improves the physical properties of an energetic material while also increasing its specific energy yield. Energetic plasticizers are usually preferred to non-energetic plasticizers, especially for solid rocket propellants. Energetic plasticizers reduce the required mass of propellant, enabling a rocket vehicle to carry more payload or reach higher velocities than would otherwise be the case. However, safety or cost considerations may demand that non-energetic plasticizers be used, even in rocket propellants. The solid rocket propellant used to fuel the Space Shuttle solid rocket booster employs HTPB, a synthetic rubber, as a non-energetic secondary fuel.

Plasticizers for energetic materials

Here are some energetic plasticizers used in rocket propellants and smokeless powders:

Due to the secondary alcohol groups, NG and BTTN have relatively low thermal stability. TMETN, DEGDN, BDNPF, and BDNPA have relatively low energies. NG and DEGDN have relatively high vapor pressure. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Polyvinyl chloride</span> Common synthetic polymer

Polyvinyl chloride (alternatively: poly(vinyl chloride), colloquial: polyvinyl, or simply vinyl; abbreviated: PVC) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of PVC are produced each year.

<span class="mw-page-title-main">Polyethylene terephthalate</span> Polymer

Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods, and thermoforming for manufacturing, and in combination with glass fibre for engineering resins.

<span class="mw-page-title-main">Phthalates</span> Any ester derived from phthalic acid

Phthalates, or phthalate esters, are esters of phthalic acid. They are mainly used as plasticizers, i.e., substances added to plastics to increase their flexibility, transparency, durability, and longevity. They are used primarily to soften polyvinyl chloride (PVC). Note that while phthalates are usually plasticizers, not all plasticizers are phthalates. The two terms are specific and unique and cannot be used interchangeably.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

<span class="mw-page-title-main">Polymer clay</span> PVC-based hardenable modeling clay

Polymer clay is a type of hardenable modeling clay based on the polymer polyvinyl chloride (PVC). It typically contains no clay minerals, but like mineral clay a liquid is added to dry particles until it achieves gel-like working properties, and similarly, the part is put into an oven to harden, hence its colloquial designation as clay. Polymer clay is generally used for making arts and craft items, and is also used in commercial applications to make decorative parts. Art made from polymer clay can now be found in major museums.

The Composition C family is a family of related US-specified plastic explosives consisting primarily of RDX. All can be moulded by hand for use in demolition work and packed by hand into shaped charge devices. Variants have different proportions and plasticisers and include composition C-2, composition C-3, and composition C-4.

<span class="mw-page-title-main">Terephthalic acid</span> Chemical compound

Terephthalic acid is an organic compound with formula C6H4(CO2H)2. This white solid is a commodity chemical, used principally as a precursor to the polyester PET, used to make clothing and plastic bottles. Several million tons are produced annually. The common name is derived from the turpentine-producing tree Pistacia terebinthus and phthalic acid.

Superplasticizers (SPs), also known as high range water reducers, are additives used for making high-strength concrete or to place self-compacting concrete. Plasticizers are chemical compounds enabling the production of concrete with approximately 15% less water content. Superplasticizers allow reduction in water content by 30% or more. These additives are employed at the level of a few weight percent. Plasticizers and superplasticizers also retard the setting and hardening of concrete.

<span class="mw-page-title-main">Bis(2-ethylhexyl) phthalate</span> Organic compound used as a plasticizer to soften polymer matrix

Bis(2-ethylhexyl) phthalate (di-2-ethylhexyl phthalate, diethylhexyl phthalate, diisooctyl phthalate, DEHP; incorrectly — dioctyl phthalate, DIOP) is an organic compound with the formula C6H4(CO2C8H17)2. DEHP is the most common member of the class of phthalates, which are used as plasticizers. It is the diester of phthalic acid and the branched-chain 2-ethylhexanol. This colorless viscous liquid is soluble in oil, but not in water.

Lignosulfonates (LS) are water-soluble anionic polyelectrolyte polymers: they are byproducts from the production of wood pulp using sulfite pulping. Most delignification in sulfite pulping involves acidic cleavage of ether bonds, which connect many of the constituents of lignin. Sulfonated lignin (SL) refers to other forms of lignin by-product, such as those derived from the much more popular Kraft process, that have been processed to add sulfonic acid groups. The two have similar uses and are commonly confused with each other, with SL being much cheaper. LS and SL both appear as free-flowing powders; the former is light brown while the latter is dark brown.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">2-Ethylhexanol</span> Chemical compound

2-Ethylhexanol (abbreviated 2-EH) is an organic compound with formula C8H18O. It is a branched, eight-carbon chiral alcohol. It is a colorless liquid that is poorly soluble in water but soluble in most organic solvents. It is produced on a large scale (>2,000,000,000 kg/y) for use in numerous applications such as solvents, flavors, and fragrances and especially as a precursor for production of other chemicals such as emollients and plasticizers. It is encountered in plants, fruits, and wines. The odor has been reported as "heavy, earthy, and slightly floral" for the R enantiomer and "a light, sweet floral fragrance" for the S enantiomer.

<span class="mw-page-title-main">Diisobutyl phthalate</span> Chemical compound

Diisobutyl phthalate (DIBP) is a phthalate ester having the structural formula C6H4(COOCH2CH 2)2. It is formed by the esterification of isobutanol and phthalic anhydride. This and other phthalates are used as plasticizers due to their flexibility and durability. They are found in many industrial and personal products, such as lacquers, nail polish and cosmetics. DIBP can be absorbed via oral ingestion and dermal exposure. When it comes to excretion, DIBP is first converted into the hydrolytic monoester monoisobutyl phthalate (MIBP). The primary excretory route is urine, with biliary excretion being noted in minor amounts. DIBP has lower density and freezing point than the related compound dibutyl phthalate (DBP).

PBAT is a biodegradable random copolymer, specifically a copolyester of adipic acid, 1,4-butanediol and terephthalic acid. PBAT is produced by many different manufacturers and may be known by the brand names ecoflex, Wango,Ecoworld, Eastar Bio, and Origo-Bi. It is also called poly(butylene adipate-co-terephthalate) and sometimes polybutyrate-adipate-terephthalate or even just "polybutyrate". It is generally marketed as a fully biodegradable alternative to low-density polyethylene, having many similar properties including flexibility and resilience, allowing it to be used for many similar uses such as plastic bags and wraps. The structure is a random-block polymer consisting of butanediol–adipic acid and butanediol-terephthalic acid blocks.

A dispersant or a dispersing agent is a substance, typically a surfactant, that is added to a suspension of solid or liquid particles in a liquid to improve the separation of the particles and to prevent their settling or clumping.

Dibasic ester or DBE is an ester of a dicarboxylic acid. Depending on the application, the alcohol may be methanol or higher molecular weight monoalcohols.

<span class="mw-page-title-main">Diethyl phthalate</span> Chemical compound

Diethyl phthalate (DEP) is a phthalate ester. It occurs as a colourless liquid without significant odour but has a bitter, disagreeable taste. It is more dense than water and insoluble in water; hence, it sinks in water.

<span class="mw-page-title-main">2-Acrylamido-2-methylpropane sulfonic acid</span> Chemical compound

2-Acrylamido-2-methylpropane sulfonic acid (AMPS) was a Trademark name by The Lubrizol Corporation. It is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of AMPS in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

Bis(2-ethylhexyl) terephthalate commonly abbreviated DEHT (Dioctyl terephthalate or DOTP), is an organic compound with the formula C6H4(CO2C8H17)2. It is a non-phthalate plasticizer, being the diester of terephthalic acid and the branched-chain 2-ethylhexanol, which is often generically referred to as octyl. This colorless viscous liquid is used for softening PVC plastics and is known for chemical similarity to general purpose phthalates such as DEHP and DINP, but without any negative regulatory pressure. It possesses very good plasticizing properties and may be used as a direct replacement for DEHP and DINP in many applications.

<span class="mw-page-title-main">Bis(2-ethylhexyl)tetrabromophthalate</span> Chemical compound

Bis(2-ethylhexyl)tetrabromophthalate (or TBPH), is a brominated phthalate derivative with the formula C24H34Br4O4 commonly used as a brominated flame retardant (BFR).

References

  1. 1 2 Allsopp, M. W.; Vianello, G. (2012). "Poly(Vinyl Chloride)". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a21_717. ISBN   978-3527306732.
  2. David F. Cadogan and Christopher J. Howick "Plasticizers" in Ullmann's Encyclopedia of Industrial Chemistry 2000, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a20_439
  3. (1) Maeda, Y.; Paul, D. R. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 957–980.
  4. (1) Maeda, Y.; Paul, D. R. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 1005–1016.
  5. (1) Casalini, R.; Ngai, K. L.; Robertson, C. G.; Roland, C. M. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 1841–1847.
  6. Capponi, S.; Alvarez, F.; Racko, D. (2020), "Free Volume in a PVME Polymer–Water Solution", Macromolecules, XXX (XXX): XXX–XXX, Bibcode:2020MaMol..53.4770C, doi:10.1021/acs.macromol.0c00472, hdl: 10261/218380 , S2CID   219911779
  7. Malveda, Michael P (July 2015). "Chemical Economics Handbook Report on Plasticizers".{{cite journal}}: Cite journal requires |journal= (help)
  8. Archived March 27, 2009, at the Wayback Machine
  9. Halden, Rolf U. (2010). "Plastics and Health Risks". Annual Review of Public Health. 31: 179–194. doi: 10.1146/annurev.publhealth.012809.103714 . PMID   20070188.
  10. Geiss, O.; Tirendi, S.; Barrero-Moreno, J.; Kotzias, D., "Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars", Environment International 2009, 35, 1188-1195. doi : 10.1016/j.envint.2009.07.016
  11. Chemical and Engineering News, 2002, 80(20), 45; http://pubs.acs.org/cen/whatstuff/stuff/8020stuff.html
  12. DEHP (plasticizer)
  13. TOTM as plasticizer
  14. DEHS (plasticizer)
  15. Cadogan DF, Howick CJ (2000). "Plasticizers". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a20_439. ISBN   3527306730.
  16. Cement Admixture Association. "CAA". www.admixtures.org.uk. Archived from the original on March 16, 2008. Retrieved April 2, 2008.
  17. C&EN: Coverstory - Synthetic Chemistry Moves Into Concrete
  18. Archived July 24, 2011, at the Wayback Machine
  19. Kirby, Glen H.; Jennifer A. Lewis (2002). "Rheological property evolution in concentrated cement-polyelectrolyte suspensions". Journal of the American Ceramic Society. 85 (12): 2989–2994. doi:10.1111/j.1151-2916.2002.tb00568.x.
  20. 2,2,2-trinitroethyl 2-nitroxyethyl ether and a method of preparation - US Patent 4745208