Aldonic acid

Last updated
The skeletal structure of an aldonic acid, gluconic acid (top), and its aldose, glucose (bottom). Aldonic Acid 1.png
The skeletal structure of an aldonic acid, gluconic acid (top), and its aldose, glucose (bottom).

Aldonic acids are sugar acids with the general chemical formula, HO2C(CHOH)nCH2OH. They are obtained by oxidizing the aldehyde (-CHO group) of an aldose to form a carboxylic acid (-COOH group). [1] Aldonic acids are generally found in their ring form. However, these rings do not have a chiral carbon at the terminal end bearing the aldehyde, and they cannot form R−O−R′ linkages between different molecules. [2]

Contents

The nomenclature of aldonic acids and their lactones is based on replacing the suffix "-ose" with "onic acid" or "onolactone". Hence, D-glucose is oxidized to D-gluconic acid and D-gluconolactone. [3]

Synthesis

Oxidation by bromine and water

Aldonic acids are most commonly prepared by the oxidation of the sugar with bromine and water under neutral pH. [4]

The reaction mechanism of bromine and water being used to oxidize the aldehyde group of an aldose. Bromine Ox Final.png
The reaction mechanism of bromine and water being used to oxidize the aldehyde group of an aldose.

Strecker reaction

Alternatively, they arise by homologation of an aldose using the Strecker reaction. [5] Cyanide in ammonia reacts with an aldose to produce an intermediate, which is then reacted with a hydronium ion to form an aldonic acid.

Oxidation by Benedict's and Fehling's reagents

Aldonic acids are the products of the oxidation of aldoses by Benedict's or Fehling's reagents. [6] Copper ions react with an aldose to form a red precipitate, Cu2O.  

The reaction scheme of an aldose being oxidized by the copper ions in a Benedict's reagent solution. The R group provided is an example of a sugar backbone. Benedict's Final1.png
The reaction scheme of an aldose being oxidized by the copper ions in a Benedict's reagent solution. The R group provided is an example of a sugar backbone.

Natural synthesis

Anaerobic bacteria can also perform dehydrogenation to produce aldonic acids. [7] This is done by synthesizing enzymes that are able to selectively oxidize aldoses to their corresponding aldonic acid.

Applications

In commercial settings, glucose, galactose, or arabinose are commonly oxidized to obtain aldonic acids. [7] These products can then be used as the building blocks for preservatives, buffering agents, and other chemicals. [7] As such, the use of aldonic acids for chemical applications is of growing interest to various industries.

Aldonic acids can be used as the natural starting materials to synthetic products [8] including polyesters and polyurethane. [9] The incorporation of these organic sugars into synthetic materials allow for a more renewable alternative to oil-based polymer synthesis, [9] and increased structural durability within polymer chains. [10]

Properties

Aldonic acids are typically used in industrial applications for their ability to degrade naturally in the environment. [9] This can be attributed to their affinity with water, as the polar bonds within the carboxylic acid group of aldonic acids allow them to interact with aquatic systems. [11]

The structural diversity of aldonic acids also allow for various properties. Their ring formation creates an added layer of rigidity when integrated with other materials. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

Lactones are cyclic carboxylic esters are intramolecular esters derived from hydroxycarboxylic acids. They can be saturated or unsaturated. Some contain heteroatoms replacing one or more carbon atoms of the ring.

<span class="mw-page-title-main">Polythiophene</span>

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

<span class="mw-page-title-main">Reducing sugar</span> Sugars that contain free OH group at the anomeric carbon atom

A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a carboxylic acid.

Aldaric acids are a group of sugar acids, where the terminal hydroxyl and carbonyl groups of the sugars have been replaced by terminal carboxylic acids, and are characterised by the formula HO2C-(CHOH)n-CO2H. Oxidation of just the aldehyde yields an aldonic acid while oxidation of just the terminal hydroxyl group yields an uronic acid.) Aldaric acids cannot form cyclic hemiacetals like unoxidized sugars, but they can sometimes form lactones.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

Alpha hydroxy carboxylic acids, or α-hydroxy carboxylic acids (AHAs), are a group of carboxylic acids featuring a hydroxy group located one carbon atom away from the acid group. This structural aspect distinguishes them from beta hydroxy acids, where the functional groups are separated by two carbon atoms. Notable AHAs include glycolic acid, lactic acid, mandelic acid, and citric acid.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

The Kiliani–Fischer synthesis, named for German chemists Heinrich Kiliani and Emil Fischer, is a method for synthesizing monosaccharides. It proceeds via synthesis and hydrolysis of a cyanohydrin, followed by reduction of the intermediate acid to the aldehyde, thus elongating the carbon chain of an aldose by one carbon atom while preserving stereochemistry on all the previously present chiral carbons. The new chiral carbon is produced with both stereochemistries, so the product of a Kiliani–Fischer synthesis is a mixture of two diastereomeric sugars, called epimers. For example, D-arabinose is converted to a mixture of D-glucose and D-mannose.

<span class="mw-page-title-main">Uronic acid</span> Class of carbohydrate

Uronic acids or alduronic acids are a class of sugar acids with both carbonyl and carboxylic acid functional groups. They are sugars in which the hydroxyl group furthest from the carbonyl group has been oxidized to a carboxylic acid. Usually the sugar is an aldose, but fructuronic acid also occurs. Oxidation of the terminal aldehyde instead yields an aldonic acid, while oxidation of both the terminal hydroxyl group and the aldehyde yields an aldaric acid. The names of uronic acids are generally based on their parent sugars, for example, the uronic acid analog of glucose is glucuronic acid. Uronic acids derived from hexoses are known as hexuronic acids and uronic acids derived from pentoses are known as penturonic acids.

The total synthesis of quinine, a naturally-occurring antimalarial drug, was developed over a 150-year period. The development of synthetic quinine is considered a milestone in organic chemistry although it has never been produced industrially as a substitute for natural occurring quinine. The subject has also been attended with some controversy: Gilbert Stork published the first stereoselective total synthesis of quinine in 2001, meanwhile shedding doubt on the earlier claim by Robert Burns Woodward and William Doering in 1944, claiming that the final steps required to convert their last synthetic intermediate, quinotoxine, into quinine would not have worked had Woodward and Doering attempted to perform the experiment. A 2001 editorial published in Chemical & Engineering News sided with Stork, but the controversy was eventually laid to rest once and for all when Williams and coworkers successfully repeated Woodward's proposed conversion of quinotoxine to quinine in 2007.

In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene units in saturated chain within the molecule. For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.

<span class="mw-page-title-main">2-Ethylhexanoic acid</span> Chemical compound

2-Ethylhexanoic acid is the organic compound with the formula CH3(CH2)3CH(C2H5)CO2H. It is a carboxylic acid that is widely used to prepare lipophilic metal derivatives that are soluble in nonpolar organic solvents. 2-Ethylhexanoic acid is a colorless viscous oil. It is supplied as a racemic mixture.

Lindgren oxidation is a selective method for oxidizing aldehydes to carboxylic acids. The reaction is named after Bengt O. Lindgren.

In polymer chemistry, the term prepolymer or pre-polymer, refers to a monomer or system of monomers that have been reacted to an intermediate-molecular mass state. This material is capable of further polymerization by reactive groups to a fully cured, high-molecular-mass state. As such, mixtures of reactive polymers with un-reacted monomers may also be referred to as pre-polymers. The term "pre-polymer" and "polymer precursor" may be interchanged.

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. The typical reaction conditions used today were developed by G. A. Kraus. H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.

Shiina macrolactonization is an organic chemical reaction that synthesizes cyclic compounds by using aromatic carboxylic acid anhydrides as dehydration condensation agents. In 1994, Prof. Isamu Shiina reported an acidic cyclization method using Lewis acid catalyst, and, in 2002, a basic cyclization using nucleophilic catalyst.

Glucose chain shortening and lengthening is the chemical processes for decreasing or increasing the carbon chain length of glucose. Glucose can be shortened by oxidation and decarboxylation to generate arabinose, a reaction known as the Ruff degradation. To increase the glucose carbon chain, a series of chemical reactions can be used to add one more carbon at the aldehyde end of glucose; this process is known as the Kiliani–Fischer synthesis.

<span class="mw-page-title-main">Albright–Goldman oxidation</span>

The Albright–Goldman oxidation is a name reaction of organic chemistry, first described by the American chemists J. Donald Albright and Leon Goldman in 1965. The reaction is particularly suitable for the synthesis of aldehydes from primary alcohols. Analogously, secondary alcohols can be oxidized to form ketones. Dimethyl sulfoxide/acetic anhydride serves as oxidizing agent.

References

  1. Gold, Victor, ed. (2019). The IUPAC Compendium of Chemical Terminology: The Gold Book (4 ed.). Research Triangle Park, NC: International Union of Pure and Applied Chemistry (IUPAC). doi:10.1351/goldbook.a00212.
  2. Sartori, Suélen Karine; Diaz, Marisa Alves Nogueira; Diaz-Muñoz, Gaspar (2021-03-26). "Lactones: Classification, synthesis, biological activities, and industrial applications". Tetrahedron. 84: 132001. doi:10.1016/j.tet.2021.132001. ISSN   0040-4020.
  3. Robyt, John F. (1998). Essentials of carbohydrate chemistry. Springer advanced texts in chemistry. New York: Springer. ISBN   978-0-387-94951-2.
  4. Isbell, Horace S. (March 1962). "Oxidation of aldoses with bromine". Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry. 66A (3): 233–239. doi:10.6028/jres.066a.023. ISSN   0022-4332. PMC   5310681 .
  5. "d-gulonic-y-lactone". Organic Syntheses. 36: 38. 1956. doi:10.15227/orgsyn.036.0038. ISSN   0078-6209.
  6. Simoni, Robert D.; Hill, Robert L.; Vaughan, Martha (April 2002). "Benedict's Solution, a Reagent for Measuring Reducing Sugars: the Clinical Chemistry of Stanley R. Benedict". Journal of Biological Chemistry. 277 (16): e5–e6. doi:10.1016/s0021-9258(19)61050-1. ISSN   0021-9258.
  7. 1 2 3 Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J. (March 2013). "Bio-based production of organic acids with C orynebacterium glutamicum". Microbial Biotechnology. 6 (2): 87–102. doi:10.1111/1751-7915.12013. ISSN   1751-7915. PMC   3917452 . PMID   23199277.
  8. Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G.; Harlin, Ali; Penttilä, Merja; Koivula, Anu (2016-09-02). "Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals". Critical Reviews in Biotechnology. 36 (5): 904–916. doi:10.3109/07388551.2015.1060189. ISSN   0738-8551. PMID   26177333.
  9. 1 2 3 Galbis, Juan A.; García-Martín, M. de Gracia; de Paz, M. Violante; Galbis, Elsa (2016-02-10). "Synthetic Polymers from Sugar-Based Monomers". Chemical Reviews. 116 (3): 1600–1636. doi:10.1021/acs.chemrev.5b00242. hdl:11441/154263. ISSN   0009-2665. PMID   26291239.
  10. 1 2 Gregory, Georgina L.; López-Vidal, Eva M.; Buchard, Antoine (2017-02-14). "Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications". Chemical Communications. 53 (14): 2198–2217. doi:10.1039/C6CC09578J. ISSN   1364-548X. PMID   28127607.
  11. Morzyk-Ociepa, Barbara; Michalska, Danuta; Pietraszko, Adam (January 2004). "Structures and vibrational spectra of indole carboxylic acids. Part I. Indole-2-carboxylic acid". Journal of Molecular Structure. 688 (1–3): 79–86. Bibcode:2004JMoSt.688...79M. doi:10.1016/j.molstruc.2003.09.027. ISSN   0022-2860.