Superplasticizer

Last updated

Superplasticizers (SPs), also known as high range water reducers, are additives used for making high-strength concrete or to place self-compacting concrete. Plasticizers are chemical compounds enabling the production of concrete with approximately 15% less water content. Superplasticizers allow reduction in water content by 30% or more. These additives are employed at the level of a few weight percent. Plasticizers and superplasticizers also retard the setting and hardening of concrete. [1]

Contents

According to their dispersing functionality and action mode, one distinguishes two classes of superplasticizers:

  1. Ionic interactions (electrostatic repulsion): lignosulfonates (first generation of ancient water reducers), sulfonated synthetic polymers (naphthalene, or melamine, formaldehyde condensates) (second generation), and;
  2. Steric effects: Polycarboxylates-ether (PCE) synthetic polymers bearing lateral chains (third generation). [2]

Superplasticizers are used when well-dispersed cement particle suspensions are required to improve the flow characteristics (rheology) of concrete. Their addition allows to decrease the water-to-cement ratio of concrete or mortar without negatively affecting the workability of the mixture. It enables the production of self-consolidating concrete and high-performance concrete. The water–cement ratio is the main factor determining the concrete strength and its durability. Superplasticizers greatly improve the fluidity and the rheology of fresh concrete. The concrete strength increases when the water-to-cement ratio decreases because avoiding to add water in excess only for maintaining a better workability of fresh concrete results in a lower porosity of the hardened concrete, and so to a better resistance to compression. [3]

The addition of SP in the truck during transit is a fairly modern development within the industry. Admixtures added in transit through automated slump management system, [4] allow to maintain fresh concrete slump until discharge without reducing concrete quality.

Working mechanism

Phosphonic acid-terminated polyethers are effective superplasticizers. PEG-aminoDisphosphonic.png
Phosphonic acid-terminated polyethers are effective superplasticizers.

Traditional plasticizers are lignosulphonates as their sodium salts. [5] Superplasticizers are synthetic polymers. Compounds used as superplasticizers include (1) sulfonated naphthalene formaldehyde condensate, sulfonated melamine formaldehyde condensate, acetone formaldehyde condensate and (2) polycarboxylates ethers. Cross-linked melamine- or naphthalene-sulfonates, referred to as PMS (polymelamine sulfonate) and PNS (polynaphthalene sulfonate), respectively, are illustrative. They are prepared by cross-linking of the sulfonated monomers using formaldehyde or by sulfonating the corresponding crosslinked polymer. [1] [6]

Idealized structure of naphthalenesulfonate/formaldehyde polymer used as a superplasticizer. Naphthsulfonate+CH2O.png
Idealized structure of naphthalenesulfonate/formaldehyde polymer used as a superplasticizer.
Polycarboxylate superplasticizer stabilizing a colloidal suspension through steric interactions thanks to its lateral chains. Note: the PCE molecules are adsorbed onto positively-charged cement particles (tricalcium aluminate (
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
C3A) mineral phase). Suspension PCE.jpg
Polycarboxylate superplasticizer stabilizing a colloidal suspension through steric interactions thanks to its lateral chains. Note: the PCE molecules are adsorbed onto positively-charged cement particles (tricalcium aluminate (C3A) mineral phase).

The polymers used as plasticizers exhibit surfactant properties. They are often ionomers bearing negatively charged groups (sulfonates, carboxylates, or phosphonates...). They function as dispersants to minimize particles segregation in fresh concrete (separation of the cement slurry and water from the coarse and fine aggregates such as gravels and sand respectively). The negatively charged polymer backbone adsorbs onto the positively charged colloidal particles of unreacted cement, especially onto the tricalcium aluminate (C3A) mineral phase of cement.

Melaminesulfonate (PMS) and naphthalenesulfonate (PNS) mainly act by electrostatic interactions with cement particles favoring their electrostatic repulsion while polycarboxylate-ether (PCE) superplasticizers sorb and coat large agglomerates of cement particles, and thanks to their lateral chains, sterically favor the dispersion of large cement agglomerates into smaller ones. [7]

However, as their working mechanisms are not fully understood, cement-superplasticizer incompatibilities can be observed in certain cases. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Colloid</span> Mixture of an insoluble substance microscopically dispersed throughout another substance

A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend the definition to include substances like aerosols and gels. The term colloidal suspension refers unambiguously to the overall mixture. A colloid has a dispersed phase and a continuous phase. The dispersed phase particles have a diameter of approximately 1 nanometre to 1 micrometre.

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

Rheology is the study of the flow of matter, primarily in a fluid state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Melamine</span> Fire-resistant chemical used in dinnerware, insulation, and cleaning products

Melamine is an organic compound with the formula C3H6N6. This white solid is a trimer of cyanamide, with a 1,3,5-triazine skeleton. Like cyanamide, it contains 67% nitrogen by mass, and its derivatives have fire-retardant properties due to its release of nitrogen gas when burned or charred. Melamine can be combined with formaldehyde and other agents to produce melamine resins. Such resins are characteristically durable thermosetting plastic used in high pressure decorative laminates such as Formica, melamine dinnerware including cooking utensils, plates, plastic products, laminate flooring, and dry erase boards. Melamine foam is used as insulation, soundproofing material and in polymeric cleaning products, such as Magic Eraser.

<span class="mw-page-title-main">Plasticizer</span> Substance added to a material to make it softer and more flexible

A plasticizer is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture.

<span class="mw-page-title-main">Polyelectrolyte</span> Polymers whose repeating units bear an electrolyte group

Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are thus similar to both electrolytes (salts) and polymers and are sometimes called polysalts. Like salts, their solutions are electrically conductive. Like polymers, their solutions are often viscous. Charged molecular chains, commonly present in soft matter systems, play a fundamental role in determining structure, stability and the interactions of various molecular assemblies. Theoretical approaches to describing their statistical properties differ profoundly from those of their electrically neutral counterparts, while technological and industrial fields exploit their unique properties. Many biological molecules are polyelectrolytes. For instance, polypeptides, glycosaminoglycans, and DNA are polyelectrolytes. Both natural and synthetic polyelectrolytes are used in a variety of industries.

<span class="mw-page-title-main">Syntactic foam</span> Composite material filled with low-density spheres

Syntactic foams are composite materials synthesized by filling a metal, polymer, cementitious or ceramic matrix with hollow spheres called microballoons or cenospheres or non-hollow spheres as aggregates. In this context, "syntactic" means "put together." The presence of hollow particles results in lower density, higher specific strength, lower coefficient of thermal expansion, and, in some cases, radar or sonar transparency.

<span class="mw-page-title-main">Gypsum concrete</span>

Gypsum concrete is a building material used as a floor underlayment used in wood-frame and concrete construction for fire ratings, sound reduction, radiant heating, and floor leveling. It is a mixture of gypsum plaster, Portland cement, and sand.

<span class="mw-page-title-main">Trimethylolpropane triacrylate</span> Chemical compound

Trimethylolpropane triacrylate (TMPTA) is a trifunctional acrylate ester monomer derived from trimethylolpropane, used in the manufacture of plastics, adhesives, acrylic glue, anaerobic sealants, and ink. It is useful for its low volatility and fast cure response. It has the properties of weather, chemical and water resistance, as well as good abrasion resistance. End products include alkyd coatings, compact discs, hardwood floors, concrete and cementitious applications, Dental composites, photolithography, letterpress, screen printing, elastomers, automobile headlamps, acrylics and plastic components for the medical industry.

Lignosulfonates (LS) are water-soluble anionic polyelectrolyte polymers: they are byproducts from the production of wood pulp using sulfite pulping. Most delignification in sulfite pulping involves acidic cleavage of ether bonds, which connect many of the constituents of lignin. Sulfonated lignin (SL) refers to other forms of lignin by-product, such as those derived from the much more popular Kraft process, that have been processed to add sulfonic acid groups. The two have similar uses and are commonly confused with each other, with SL being much cheaper. LS and SL both appear as free-flowing powders; the former is light brown while the latter is dark brown.

Air entrainment in concrete is the intentional creation of tiny air bubbles in a batch by adding an air entraining agent during mixing. A form of surfactant it allows bubbles of a desired size to form. These are created during concrete mixing, with most surviving to remain part of it when hardened.

<span class="mw-page-title-main">Paraformaldehyde</span> Chemical compound

Paraformaldehyde (PFA) is the smallest polyoxymethylene, the polymerization product of formaldehyde with a typical degree of polymerization of 8–100 units. Paraformaldehyde commonly has a slight odor of formaldehyde due to decomposition. Paraformaldehyde is a poly-acetal.

<span class="mw-page-title-main">Particle aggregation</span> Clumping of particles in suspension

Particle agglomeration refers to the formation of assemblages in a suspension and represents a mechanism leading to the functional destabilization of colloidal systems. During this process, particles dispersed in the liquid phase stick to each other, and spontaneously form irregular particle assemblages, flocs, or agglomerates. This phenomenon is also referred to as coagulation or flocculation and such a suspension is also called unstable. Particle agglomeration can be induced by adding salts or other chemicals referred to as coagulant or flocculant.

Water reducers are special chemical products added to a concrete mixture before it is poured. They are from the same family of products as retarders. The first class of water reducers was the lignosulfonates which has been used since the 1930s. These inexpensive products were derived from wood and paper industry, but are now advantageously replaced by other synthetic sulfonate and polycarboxylate, also known as superplasticizers.

A dispersant or a dispersing agent is a substance, typically a surfactant, that is added to a suspension of solid or liquid particles in a liquid to improve the separation of the particles and to prevent their settling or clumping.

<span class="mw-page-title-main">2-Acrylamido-2-methylpropane sulfonic acid</span> Chemical compound

2-Acrylamido-2-methylpropane sulfonic acid (AMPS) was a Trademark name by The Lubrizol Corporation. It is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of AMPS in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

<span class="mw-page-title-main">Geopolymer cement</span> Aluminosilicate-based cement with a low-carbon footprint

Geopolymer cement is a binding system that hardens at room temperature.

Dispersion Technology Inc is a scientific instrument manufacturer located in Bedford Hills, New York. It was founded in 1996 by Philip Goetz and Dr. Andrei Dukhin. The company develops and sells analytical instruments intended for characterizing concentrated dispersions and emulsions, complying with the International Standards for acoustic particle sizing ISO 20998 and electroacoustic zeta potential measurement ISO 13099.

<span class="mw-page-title-main">Polymer soil stabilization</span> Engineering technique

Polymer soil stabilization refers to the addition of polymers to improve the physical properties of soils, most often for geotechnical engineering, construction, or agricultural projects. Even at very small concentrations within soils, various polymers have been shown to increase water retention and reduce erosion, increase soil shear strength, and support soil structure. A wide range of polymers have been used to address problems ranging from the prevention of desertification to the reinforcement of roadbeds.

References

  1. 1 2 Gerry Bye, Paul Livesey, Leslie Struble (2011). "Admixtures and Special Cements". Portland cement, Third edition. doi:10.1680/pc.36116.185 (inactive 31 January 2024). ISBN   978-0-7277-3611-6.{{cite book}}: CS1 maint: DOI inactive as of January 2024 (link) CS1 maint: multiple names: authors list (link)
  2. Lu, Bing; Weng, Yiwei; Li, Mingyang; Qian, Ye; Leong, Kah Fai; Tan, Ming Jen; Qian, Shunzhi (May 2019). "A systematical review of 3D printable cementitious materials". Construction and Building Materials. 207: 477–490. doi:10.1016/j.conbuildmat.2019.02.144. hdl: 10356/142503 . S2CID   139995838.
  3. Houst, Yves F.; Bowen, Paul; Perche, Francois; Kauppi, Annika; Borget, Pascal; Galmiche, Laurent; Le Meins, Jean-Francois; Lafuma, Francoise; Flatt, Robert J.; Schober, Irene; et al. (2008). "Design and function of novel superplasticizers for more durable high-performance concrete (Superplast project)". Cement and Concrete Research. 38 (10): 1197–1209. doi:10.1016/j.cemconres.2008.04.007.
  4. "In-transit concrete management system | GCP Applied Technologies".
  5. 1 2 R. Flatt, I. Schober (2012). "Superplasticizers and the rheology of concrete". In Nicolas Roussel (ed.). Understanding the Rheology of Concrete. Woodhead. ISBN   978-0-85709-028-7.
  6. Mollah, M. Y. A.; Adams, W. J.; Schennach, R.; Cocke, D. L. (2000). "A review of cement-superplasticizer interactions and their models". Advances in Cement Research. 12 (4): 153–161. doi:10.1680/adcr.2000.12.4.153.
  7. Collepardi, M. (January 1998). "Admixtures used to enhance placing characteristics of concrete". Cement and Concrete Composites. 20 (2–3): 103–112. doi:10.1016/S0958-9465(98)00071-7. ISSN   0958-9465.
  8. Ramachandran, V.S. (1995) Concrete Admixtures Handbook – Properties, Science, and Technology, 2nd Edition, William Andrew Publishing, ISBN   0-8155-1373-9 p. 121

Further reading