Engineering plastic

Last updated
An ABS 3D bell manufactured with a 3D printer ABS Printed Bell on Makerbot ThingOMatic.jpg
An ABS 3D bell manufactured with a 3D printer

Engineering plastics [1] are a group of plastic materials that have better mechanical or thermal properties than the more widely used commodity plastics (such as polystyrene, polyvinyl chloride, polypropylene and polyethylene).

Contents

Engineering plastics are more expensive than standard plastics, therefore they are produced in lower quantities and tend to be used for smaller objects or low-volume applications (such as mechanical parts), rather than for bulk and high-volume ends (like containers and packaging). Engineering plastics have a higher heat resistance than standard plastics and are continuously usable at temperatures up to about 150 °C (300 °F).

The term usually refers to thermoplastic materials rather than thermosetting ones. Examples of engineering plastics include polyamides (PA, nylons), used for skis and ski boots; polycarbonates (PC), used in motorcycle helmets and optical discs; and poly(methyl methacrylate) (PMMA, major brand names acrylic glass and plexiglass), used e.g. for taillights and protective shields. The currently most-consumed engineering plastic is acrylonitrile butadiene styrene (ABS), used for e.g. car bumpers, dashboard trim and Legos.

Engineering plastics have gradually replaced traditional engineering materials such as metal, glass or ceramics in many applications. Besides equalling or surpassing them in strength, weight, and other properties, engineering plastics are much easier to manufacture, especially in complicated shapes. Across all different product types, more than 22 million tonnes of engineering plastics were consumed worldwide in 2020. [2]

Relevant properties

Each engineering plastic usually has a unique combination of properties that may make it the material of choice for some application. For example, polycarbonates are highly resistant to impact, while polyamides are highly resistant to abrasion. Other properties exhibited by various grades of engineering plastics include heat resistance, mechanical strength, rigidity, chemical stability, self lubrication (specially used in manufacturing of gears and skids) and fire safety.

Examples

A comparison of standard plastics, engineering plastics, and high-performance plastics Highperformance thermoplastics en.svg
A comparison of standard plastics, engineering plastics, and high-performance plastics

See also

Related Research Articles

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Poly(methyl methacrylate)</span> Transparent thermoplastic, commonly called acrylic

Poly(methyl methacrylate) (PMMA) is the synthetic polymer derived from methyl methacrylate. It is used as an engineering plastic, and it is a transparent thermoplastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and brands Crylux, Hesalite, Plexiglas, Acrylite, Lucite, and Perspex, among several others. This plastic is often used in sheet form as a lightweight or shatter-resistant alternative to glass. It can also be used as a casting resin, in inks and coatings, and for many other purposes.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Acrylonitrile butadiene styrene</span> Thermoset polymer

Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8)x·​(C4H6)y·​(C3H3N)z ) is a common thermoplastic polymer. Its glass transition temperature is approximately 105 °C (221 °F). ABS is amorphous and therefore has no true melting point.

<span class="mw-page-title-main">Polymer degradation</span> Alteration in the polymer properties under the influence of environmental factors

Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. The rate of this degradation varies significantly; biodegradation can take decades, whereas some industrial processes can completely decompose a polymer in hours.

Royalex was a composite material, comprising an outer layer of vinyl and hard acrylonitrile butadiene styrene plastic (ABS) and an inner layer of ABS foam. The layers are bonded by heat treatment. It was used to manufacture durable, mid-priced canoes. Its supplier closed out production of the material in 2014.

<span class="mw-page-title-main">Poly(methyl acrylate)</span> Chemical compound

Poly(methyl acrylate) (PMA) is a family of organic polymers with the formula (CH2CHCO2CH3)n. It is a synthetic acrylate polymer derived from methyl acrylate monomer. The polymers are colorless. This homopolymer is far less important than copolymers derived from methyl acrylate and other monomers. PMA is softer than polymethyl methacrylate (PMMA), It is tough, leathery, and flexible.

<span class="mw-page-title-main">Hot-melt adhesive</span> Glue applied by heating

Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

In materials science, a polymer blend, or polymer mixture, is a member of a class of materials analogous to metal alloys, in which at least two polymers are blended together to create a new material with different physical properties.

<span class="mw-page-title-main">Commodity plastics</span> Inexpensive plastics with weak mechanical properties

Commodity plastics or commodity polymers are plastics produced in high volumes for applications where exceptional material properties are not needed. In contrast to engineering plastics, commodity plastics tend to be inexpensive to produce and exhibit relatively weak mechanical properties. Some examples of commodity plastics are polyethylene, polypropylene, polystyrene, polyvinyl chloride, and poly(methyl methacrylate) .Globally, the most widely used thermoplastics include both polypropylene and polyethylene. Products made from commodity plastics include disposable plates, disposable cups, photographic and magnetic tape, clothing, reusable bags, medical trays, and seeding trays.

<span class="mw-page-title-main">Styrene-acrylonitrile resin</span> Chemical compound

Styrene acrylonitrile resin (SAN) is a copolymer plastic consisting of styrene and acrylonitrile. It is widely used in place of polystyrene owing to its greater thermal resistance. The chains of between 70 and 80% by weight styrene and 20 to 30% acrylonitrile. Larger acrylonitrile content improves mechanical properties and chemical resistance, but also adds a yellow tint to the normally transparent plastic.

A. Schulman was an American supplier of plastic compounding products, color concentrates, and additives before its acquisition by LyondellBasell in 2018.

Rubber toughening is a process in which rubber nanoparticles are interspersed within a polymer matrix to increase the mechanical robustness, or toughness, of the material. By "toughening" a polymer it is meant that the ability of the polymeric substance to absorb energy and plastically deform without fracture is increased. Considering the significant advantages in mechanical properties that rubber toughening offers, most major thermoplastics are available in rubber-toughened versions; for many engineering applications, material toughness is a deciding factor in final material selection.

<span class="mw-page-title-main">Twinwall plastic</span>

Twin-wall plastic, specifically twin-wall polycarbonate, is an extruded multi-wall polymer product created for applications where its strength, thermally insulative properties, and moderate cost are ideal. Polycarbonate, which is most commonly formed through the reaction of Bisphenol A and Carbonyl Chloride, is an extremely versatile material. It is significantly lighter than glass, while managing to be stronger, more flexible, and more impact resistant. Twin-wall polycarbonate is used most commonly for green houses, where it can support itself in a structurally sound configuration, limit the amount of UV light due to its nominal translucence, and can withstand the rigors of daily abuse in an outdoor environment. The stagnant air in the cellular space between sheets provides insulation, and additional cell layers can be extruded to enhance insulative properties at the cost of light transmission.

<span class="mw-page-title-main">Plastic</span> Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

<span class="mw-page-title-main">Acrylonitrile styrene acrylate</span> Chemical compound

Acrylonitrile styrene acrylate (ASA), also called acrylic styrene acrylonitrile, is an amorphous thermoplastic developed as an alternative to acrylonitrile butadiene styrene (ABS), that has improved weather resistance. It is an acrylate rubber-modified styrene acrylonitrile copolymer. It is used for general prototyping in 3D printing, where its UV resistance and mechanical properties make it an excellent material for use in fused filament fabrication printers, particularly for outdoor applications. ASA is also widely used in the automotive industry.

Glass-filled polymer, is a mouldable composite material. It comprises short glass fibers in a matrix of a polymer material. It is used to manufacture a wide range of structural components by injection or compression moulding. It is an ideal glass alternative that offers flexibility in the part, chemical resistance, shatter resistance and overall better durability.

<span class="mw-page-title-main">Fused filament fabrication</span> 3D printing process

Fused filament fabrication (FFF), also known as fused deposition modeling, or filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large spool through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. "Fused filament fabrication" was coined by the members of the RepRap project to give an acronym (FFF) that would be legally unconstrained in its use.

IR welding is a welding technique that uses a non-contact heating method to melt and fuse thermoplastic parts together using the energy from infrared radiation. The process was first developed in the late 1900s, but due to the high capital cost of IR equipment the process was not commonly applied in industry until prices dropped in the 1990s. IR welding typically uses a range of wavelengths from 800 to 11,000 nm on the electromagnetic spectrum to heat, melt, and fuse the interface between two plastic parts through the absorption and conversion of the IR energy into heat. Laser welding is a similar joining process that applies IR radiation at a single wavelength.

References

  1. IAPD Education Committee. "Amorphous and Semi-Crystalline Engineering Thermoplastics, Module 4". Basic Plastics Education tutorials. International Association of Plastics Distributors. Archived from the original on 2 March 2012. Retrieved 13 June 2012.
  2. "Ceresana Market Study 'Engineering Plastics'" . Retrieved 2021-11-24.