Hydration reaction

Last updated

In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. [1]

Contents

Organic chemistry

Any unsaturated organic compound is susceptible to hydration.

Epoxides to glycol

Several million tons of ethylene glycol are produced annually by the hydration of oxirane, a cyclic compound also known as ethylene oxide:

C2H4O + H2O → HO–CH2CH2–OH

Acid catalysts are typically used. [2]

Alkenes

The general chemical equation for the hydration of alkenes is the following:

RRC=CH2 + H2O → RRC(OH)-CH3

A hydroxyl group (OH) attaches to one carbon of the double bond, and a proton (H+) adds to the other. The reaction is highly exothermic. In the first step, the alkene acts as a nucleophile and attacks the proton, following Markovnikov's rule. In the second step an H2O molecule bonds to the other, more highly substituted carbon. The oxygen atom at this point has three bonds and carries a positive charge (i.e., the molecule is an oxonium). Another water molecule comes along and takes up the extra proton. This reaction tends to yield many undesirable side products, (for example diethyl ether in the process of creating ethanol) and in its simple form described here is not considered very useful for the production of alcohol.

Two approaches are taken. Traditionally the alkene is treated with sulfuric acid to give alkyl sulphate esters. In the case of ethanol production, this step can be written:

H2SO4 + C2H4 → C2H5-O-SO3H

Subsequently, this sulphate ester is hydrolyzed to regenerate sulphuric acid and release ethanol:

C2H5-O-SO3H + H2O → H2SO4 + C2H5OH

This two step route is called the "indirect process".

In the "direct process," the acid protonates the alkene, and water reacts with this incipient carbocation to give the alcohol. The direct process is more popular because it is simpler. The acid catalysts include phosphoric acid and several solid acids. [1] Here an example reaction mechanism of the hydration of 1-methylcyclohexene to 1-methylcyclohexanol:

Hydration reaction mechanism from 1-methylcyclohexene to 1-methylcyclohexanol. Alkene hydration reaction.svg
Hydration reaction mechanism from 1-methylcyclohexene to 1-methylcyclohexanol.

Many alternative routes are available for producing alcohols, including the hydroboration–oxidation reaction, the oxymercuration–reduction reaction, the Mukaiyama hydration, the reduction of ketones and aldehydes and as a biological method fermentation.

Alkynes

Acetylene hydrates to give acetaldehyde: [3] The process typically relies on mercury catalysts and has been discontinued in the West but is still practiced in China. The Hg2+ center binds to a C≡C bond, which is then attacked by water. The reaction is

H2O + C2H2 → CH3CHO

Aldehydes and ketones

Aldehydes and to some extent even ketones, hydrate to geminal diols. The reaction is especially dominant for formaldehyde, which, in the presence of water, exists significantly as dihydroxymethane.

Conceptually similar reactions include hydroamination and hydroalkoxylation, which involve adding amines and alcohols to alkenes.

Nitriles

Nitriles are susceptible to hydration to amides: RCN + H2O → RC(O)NH2 This reaction requires catalysts. Enzymes are used for the commercial production of acrylamide from acrylonitrile. [4]

Inorganic and materials chemistry

Hydration is an important process in many other applications; one example is the production of Portland cement by the crosslinking of calcium oxides and silicates that is induced by water. Hydration is the process by which desiccants function.

CuSO4*5H2O is bright blue and has a rather different structure from its colourless anhydrous derivative. Copper sulfate.jpg
CuSO4·5H2O is bright blue and has a rather different structure from its colourless anhydrous derivative.
Anhydrous CuSO4 powder Copper sulfate anhydrous.jpg
Anhydrous CuSO4 powder

See also

Related Research Articles

<span class="mw-page-title-main">Alcohol (chemistry)</span> Organic compound with at least one hydroxyl (–OH) group

In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sucrose and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula R−O−R′, where R and R′ represent the alkyl or aryl groups. Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

<span class="mw-page-title-main">Ethylene</span> Hydrocarbon compound (H₂C=CH₂)

Ethylene is a hydrocarbon which has the formula C2H4 or H2C=CH2. It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

<span class="mw-page-title-main">Cumene process</span> Industrial process

The cumene process is an industrial process for synthesizing phenol and acetone from benzene and propylene. The term stems from cumene, the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), and independently by Heinrich Hock in 1944.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

<span class="mw-page-title-main">Vinyl alcohol</span> Chemical compound

Vinyl alcohol, also called ethenol or ethylenol, is the simplest enol. With the formula CH2CHOH, it is a labile compound that converts to acetaldehyde immediately upon isolation near room temperature. It is not a practical precursor to any compound.

In chemistry, homogeneous catalysis is catalysis where the catalyst is in same phase as reactants, principally by a soluble catalyst a in solution. In contrast, heterogeneous catalysis describes processes where the catalysts and substrate are in distinct phases, typically solid-gas, respectively. The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is an established technology that continues to evolve. An illustrative major application is the production of acetic acid. Enzymes are examples of homogeneous catalysts.

In chemistry, a dehydration reaction is a chemical reaction that involves the loss of water from the reacting molecule or ion. Dehydration reactions are common processes, the reverse of a hydration reaction.

<span class="mw-page-title-main">Wacker process</span>

The Wacker process or the Hoechst-Wacker process refers to the oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride and copper(II) chloride as the catalyst. This chemical reaction was one of the first homogeneous catalysis with organopalladium chemistry applied on an industrial scale.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

Chloral, also known as trichloroacetaldehyde or trichloroethanal, is the organic compound with the formula Cl3CCHO. This aldehyde is a colourless liquid that is soluble in a wide range of solvents. It reacts with water to form chloral hydrate, a once widely used sedative and hypnotic substance.

<span class="mw-page-title-main">1-Propanol</span> Primary alcohol compound

1-Propanol is a primary alcohol with the formula CH3CH2CH2OH and sometimes represented as PrOH or n-PrOH. It is a colourless liquid and an isomer of 2-propanol. It is formed naturally in small amounts during many fermentation processes and used as a solvent in the pharmaceutical industry, mainly for resins and cellulose esters, and, sometimes, as a disinfecting agent.

<span class="mw-page-title-main">Chlorosulfuric acid</span> Chemical compound

Chlorosulfuric acid (IUPAC name: sulfurochloridic acid) is the inorganic compound with the formula HSO3Cl. It is also known as chlorosulfonic acid, being the sulfonic acid of chlorine. It is a distillable, colorless liquid which is hygroscopic and a powerful lachrymator. Commercial samples usually are pale brown or straw colored.

<span class="mw-page-title-main">Organoaluminium chemistry</span>

Organoaluminium chemistry is the study of compounds containing bonds between carbon and aluminium. It is one of the major themes within organometallic chemistry. Illustrative organoaluminium compounds are the dimer trimethylaluminium, the monomer triisobutylaluminium, and the titanium-aluminium compound called Tebbe's reagent. The behavior of organoaluminium compounds can be understood in terms of the polarity of the C−Al bond and the high Lewis acidity of the three-coordinated species. Industrially, these compounds are mainly used for the production of polyolefins.

<span class="mw-page-title-main">Tetraethyl orthosilicate</span> Chemical compound

Tetraethyl orthosilicate, formally named tetraethoxysilane (TEOS), ethyl silicate is the organic chemical compound with the formula Si(OC2H5)4. TEOS is a colorless liquid. It degrades in water. TEOS is the ethyl ester of orthosilicic acid, Si(OH)4. It is the most prevalent alkoxide of silicon.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

<span class="mw-page-title-main">Ammoxidation</span> Chemical process for producing nitriles from ammonia and oxygen

In organic chemistry, ammoxidation is a process for the production of nitriles using ammonia and oxygen. It is sometimes called the SOHIO process, acknowledging that ammoxidation was developed at Standard Oil of Ohio. The usual substrates are alkenes. Several million tons of acrylonitrile are produced in this way annually:

References

  1. 1 2 Falbe, Jürgen; Bahrmann, Helmut; Lipps, Wolfgang; Mayer, Dieter. "Alcohols, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_279. ISBN   978-3527306732..
  2. Siegfried Rebsdat; Dieter Mayer. "Ethylene Glycol". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_101. ISBN   978-3527306732.
  3. Marc Eckert, Gerald Fleischmann, Reinhard Jira, Hermann M. Bolt, Klaus Golka "Acetaldehyde" in Ullmann's Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a01_031.pub2.
  4. Banerjee, A.; Sharma, R.; Banerjee, U. (2002). "RETRACTED ARTICLE: The nitrile-degrading enzymes: Current status and future prospects". Applied Microbiology and Biotechnology. 60 (1–2): 33–44. doi:10.1007/s00253-002-1062-0. PMID   12382040. S2CID   44979676.