Thioformaldehyde

Last updated
Thioformaldehyde
Thioformaldehyde-2D.png
Thioformaldehyde-3D-vdW.png
Names
IUPAC name
Thioformaldehyde
Systematic IUPAC name
Methanethial
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 200-454-1
PubChem CID
  • InChI=1S/CH2S/c1-2/h1H2
    Key: DBTDEFJAFBUGPP-UHFFFAOYSA-N
  • C=S
Properties
CH2S
Molar mass 46.09
Appearanceunknown
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Thioformaldehyde is the organosulfur compound with the formula CH2S. It is the simplest thioaldehyde. This compound is not observed in the condensed state (solid or liquid) because it oligomerizes to 1,3,5-trithiane, which is a stable colorless compound with the same empirical formula.

Despite the instability of these concentrated forms, thioformaldehyde as a dilute gas has been extensively studied. For these purposes, it is produced by thermal decomposition of dimethyl disulfide. [1] The molecule has been observed in the interstellar medium [2] and has attracted much attention for its fundamental nature. [3] The tendency of thioformaldehyde to form chains and rings is a manifestation of the double bond rule.

Although thioformaldehyde tends to oligomerize, many metal complexes are known. One example is Os(SCH2)(CO)2(PPh3)2. [4]

Synthesis of a tungsten thioformaldehyde complex. WSCH2.png
Synthesis of a tungsten thioformaldehyde complex.
Synthesis of a osmium thioformaldehyde complex. OsCH2S.png
Synthesis of a osmium thioformaldehyde complex.

Related Research Articles

<span class="mw-page-title-main">Molecule</span> Electrically neutral group of two or more atoms

A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions.

In chemistry, hydronium (hydroxonium in traditional British English) is the common name for the aqueous cation H3O+, the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved in water, as Arrhenius acid molecules in solution give up a proton (a positive hydrogen ion, H+) to the surrounding water molecules (H2O). In fact, acids must be surrounded by more than a single water molecule in order to ionize, yielding aqueous H+ and conjugate base. Three main structures for the aqueous proton have garnered experimental support: the Eigen cation, which is a tetrahydrate, H3O+(H2O)3, the Zundel cation, which is a symmetric dihydrate, H+(H2O)2, and the Stoyanov cation, an expanded Zundel cation, which is a hexahydrate: H+(H2O)2(H2O)4. Spectroscopic evidence from well-defined IR spectra overwhelmingly supports the Stoyanov cation as the predominant form. For this reason, it has been suggested that wherever possible, the symbol H+(aq) should be used instead of the hydronium ion.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<span class="mw-page-title-main">Phosphaalkyne</span>

In chemistry, a phosphaalkyne is an organophosphorus compound containing a triple bond between phosphorus and carbon with the general formula R-C≡P. Phosphaalkynes are the heavier congeners of nitriles, though, due to the similar electronegativities of phosphorus and carbon, possess reactivity patterns reminiscent of alkynes. Due to their high reactivity, phosphaalkynes are not found naturally on earth, but the simplest phosphaalkyne, phosphaethyne (H-C≡P) has been observed in the interstellar medium.

<span class="mw-page-title-main">Trihydrogen cation</span> Polyatomic ion (H₃, charge +1)

The trihydrogen cation or protonated molecular hydrogen is a cation with formula H+
3
, consisting of three hydrogen nuclei (protons) sharing two electrons.

<span class="mw-page-title-main">Glycolaldehyde</span> Organic compound (HOCH2−CHO)

Glycolaldehyde is the organic compound with the formula HOCH2−CHO. It is the smallest possible molecule that contains both an aldehyde group and a hydroxyl group. It is a highly reactive molecule that occurs both in the biosphere and in the interstellar medium. It is normally supplied as a white solid. Although it conforms to the general formula for carbohydrates, Cn(H2O)n, it is not generally considered to be a saccharide.

<span class="mw-page-title-main">Dicyanoacetylene</span> Organic compound (N≡C−C≡C−C≡N)

Dicyanoacetylene, also called carbon subnitride or but-2-ynedinitrile (IUPAC), is a compound of carbon and nitrogen with chemical formula C4N2. It has a linear molecular structure, N≡C−C≡C−C≡N, with alternating triple and single covalent bonds. It can be viewed as acetylene with the two hydrogen atoms replaced by cyanide groups.

<span class="mw-page-title-main">Ethynyl radical</span> Hydrocarbon compound (•CCH)

The ethynyl radical (systematically named λ3-ethyne and hydridodicarbon(CC)) is an organic compound with the chemical formula C≡CH (also written [CCH] or C
2
H
). It is a simple molecule that does not occur naturally on Earth but is abundant in the interstellar medium. It was first observed by electron spin resonance isolated in a solid argon matrix at liquid helium temperatures in 1963 by Cochran and coworkers at the Johns Hopkins Applied Physics Laboratory. It was first observed in the gas phase by Tucker and coworkers in November 1973 toward the Orion Nebula, using the NRAO 11-meter radio telescope. It has since been detected in a large variety of interstellar environments, including dense molecular clouds, bok globules, star forming regions, the shells around carbon-rich evolved stars, and even in other galaxies.

<span class="mw-page-title-main">Helium hydride ion</span> Chemical compound

The helium hydride ion or hydridohelium(1+) ion or helonium is a cation (positively charged ion) with chemical formula HeH+. It consists of a helium atom bonded to a hydrogen atom, with one electron removed. It can also be viewed as protonated helium. It is the lightest heteronuclear ion, and is believed to be the first compound formed in the Universe after the Big Bang.

Hydrogen isocyanide is a chemical with the molecular formula HNC. It is a minor tautomer of hydrogen cyanide (HCN). Its importance in the field of astrochemistry is linked to its ubiquity in the interstellar medium.

Propynylidyne is a chemical compound that has been identified in interstellar space.

<span class="mw-page-title-main">Cyano radical</span> Chemical compound

The cyano radical (or cyanido radical) is a radical with molecular formula CN, sometimes written CN. The cyano radical was one of the first detected molecules in the interstellar medium, in 1938. Its detection and analysis was influential in astrochemistry. The discovery was confirmed with a coudé spectrograph, which was made famous and credible due to this detection. ·CN has been observed in both diffuse clouds and dense clouds. Usually, CN is detected in regions with hydrogen cyanide, hydrogen isocyanide, and HCNH+, since it is involved in the creation and destruction of these species (see also Cyanogen).

In organic chemistry, cyanopolyynes are a family of organic compounds with the chemical formula HCnN (n = 3,5,7,…) and the structural formula H−[C≡C−]nC≡N (n = 1,2,3,…). Structurally, they are polyynes with a cyano group (−C≡N) covalently bonded to one of the terminal acetylene units (H−C≡C).

Sulfur mononitride is an inorganic compound with the molecular formula SN. It is the sulfur analogue of and isoelectronic to the radical nitric oxide, NO. It was initially detected in 1975, in outer space in giant molecular clouds and later the coma of comets. This spurred further laboratory studies of the compound. Synthetically, it is produced by electric discharge in mixtures of nitrogen and sulfur compounds, or combustion in the gas phase and by photolysis in solution.

<span class="mw-page-title-main">Imidogen</span> Inorganic radical with the chemical formula NH

Imidogen is an inorganic compound with the chemical formula NH. Like other simple radicals, it is highly reactive and consequently short-lived except as a dilute gas. Its behavior depends on its spin multiplicity.

<span class="mw-page-title-main">Chromium(I) hydride</span> Chemical compound

Chromium(I) hydride, systematically named chromium hydride, is an inorganic compound with the chemical formula (CrH)
n
. It occurs naturally in some kinds of stars where it has been detected by its spectrum. However, molecular chromium(I) hydride with the formula CrH has been isolated in solid gas matrices. The molecular hydride is very reactive. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

Vibronic spectroscopy is a branch of molecular spectroscopy concerned with vibronic transitions: the simultaneous changes in electronic and vibrational energy levels of a molecule due to the absorption or emission of a photon of the appropriate energy. In the gas phase, vibronic transitions are accompanied by changes in rotational energy also.

<span class="mw-page-title-main">Argonium</span> Chemical compound

Argonium (also called the argon hydride cation, the hydridoargon(1+) ion, or protonated argon; chemical formula ArH+) is a cation combining a proton and an argon atom. It can be made in an electric discharge, and was the first noble gas molecular ion to be found in interstellar space.

Cyanophosphaethyne is an unstable molecular compound with structural formula N≡C–C≡P. It can be considered as cyanogen with one nitrogen atom replaced by phosphorus. It has been made as a dilute gas. Cyanophosphaethyne has been tentatively detected in the interstellar medium. Other structural isomers, such as C≡N–C≡P (isocyanophosphapropyne), C≡C-N≡P (azaphosphadicarbon), and N≡C–P=C (isocyanophosphavinylidene), have not been observed. The molecule has linear molecular geometry.

<span class="mw-page-title-main">Phosphorus monoxide</span> Chemical compound

Phosphorus monoxide is an unstable radical inorganic compound with molecular formula PO.

References

  1. Johnson, Donald R.; Powell, Francis X.; Kirchhoff, William H. (1971). "Microwave spectrum, ground state structure, and dipole moment of thioformaldehyde". Journal of Molecular Spectroscopy. 39: 136–145. Bibcode:1971JMoSp..39..136J. doi:10.1016/0022-2852(71)90284-0.
  2. Despois, D., "Radio Line Observations of Molecular and Isotopic Species in Comet C/1995 O1 (Hale-Bopp) Implications on the Interstellar Origin of Cometary Ices", Earth, Moon, Planets 1999, 79, 103-124.
  3. Clouthier, D. J.; Ramsay, D. A. (1983). "The Spectroscopy of Formaldehyde and Thioformaldehyde". Annual Review of Physical Chemistry. 34: 31–58. Bibcode:1983ARPC...34...31C. doi:10.1146/annurev.pc.34.100183.000335.
  4. Schenk, Wolfdieter A. (2011). "The coordination chemistry of small sulfur-containing molecules: A personal perspective". Dalton Trans. 40 (6): 1209–1219. doi:10.1039/C0DT00975J. PMID   21088787.