Mars Polar Lander

Last updated

Mars Polar Lander
Mars Polar Lander - artist depiction.png
Artist's depiction of the Mars Polar Lander on Mars
NamesMars Surveyor '98
Mission type Lander
Operator NASA / JPL
COSPAR ID 1999-001A
SATCAT no. 25605
Website Mars Polar Lander website
Mission duration334 days
Spacecraft properties
Manufacturer Martin Marietta
Launch mass290 kilograms (640 lb)
Power200 W solar array and NiH2 battery
Start of mission
Launch date20:21:10,January 3, 1999(UTC) (1999-01-03T20:21:10Z)
Rocket Delta II 7425
Launch site Cape Canaveral AFS SLC-17A
End of mission
Disposalfailure at landing
DeclaredJanuary 17, 2000 (2000-01-17)
Last contact20:00,December 3, 1999(UTC) (1999-12-03T20:00Z)
Mars lander
Landing date~20:15 UTC ERT, December 3, 1999
Landing site Ultimi Scopuli, 76°S195°W / 76°S 195°W / -76; -195 (Mars Polar Lander) (projected)
M98patch.png
Mars Surveyor 98 mission logo  

The Mars Polar Lander, also known as the Mars Surveyor '98 Lander, was a 290-kilogram robotic spacecraft lander launched by NASA on January 3, 1999, to study the soil and climate of Planum Australe, a region near the south pole on Mars. It formed part of the Mars Surveyor '98 mission. On December 3, 1999, however, after the descent phase was expected to be complete, the lander failed to reestablish communication with Earth. A post-mortem analysis determined the most likely cause of the mishap was premature termination of the engine firing prior to the lander touching the surface, causing it to strike the planet at a high velocity. [1]

Contents

The total cost of the Mars Polar Lander was US$165 million. Spacecraft development cost US$110 million, launch was estimated at US$45 million, and mission operations at US$10 million. [2]

Mission background

History

As part of the Mars Surveyor '98 mission, a lander was sought as a way to gather climate data from the ground in conjunction with an orbiter. NASA suspected that a large quantity of frozen water may exist under a thin layer of dust at the south pole. In planning the Mars Polar Lander, the potential water content in the Martian south pole was the strongest determining factor for choosing a landing location. [3] A CD-ROM containing the names of one million children from around the world was placed on board the spacecraft as part of the "Send Your Name to Mars" program designed to encourage interest in the space program among children. [4]

The primary objectives of the mission were to: [5]

Deep Space 2 Probes

The Mars Polar Lander carried two small, identical impactor probes known as "Deep Space 2 A and B". The probes were intended to strike the surface with a high velocity at approximately 73°S210°W / 73°S 210°W / -73; -210 (Deep Space 2) to penetrate the Martian soil and study the subsurface composition up to a meter in depth. However, after entering the Martian atmosphere, attempts to contact the probes failed. [3]

Deep Space 2 was funded by the New Millennium Program, and their development costs was US$28 million. [2]

Spacecraft design

The spacecraft measured 3.6 meters wide and 1.06 meters tall with the legs and solar arrays fully deployed. The base was primarily constructed with an aluminum honeycomb deck, composite graphite–epoxy sheets forming the edge, and three aluminum legs. During landing, the legs were to deploy from stowed position with compression springs and absorb the force of the landing with crushable aluminum honeycomb inserts in each leg. On the deck of the lander, a small thermal Faraday cage enclosure housed the computer, power distribution electronics and batteries, telecommunication electronics, and the capillary pump loop heat pipe (LHP) components, which maintained operable temperature. Each of these components included redundant units in the event that one may fail. [3] [6] [7]

Attitude control and propulsion

While traveling to Mars, the cruise stage was three-axis stabilized with four hydrazine monopropellant reaction engine modules, each including a 22-newton trajectory correction maneuver thruster for propulsion and a 4-newton reaction control system thruster for attitude control (orientation). Orientation of the spacecraft was performed using redundant Sun sensors, star trackers, and inertial measurement units. [6]

During descent, the lander used three clusters of pulse modulated engines, each containing four 266-newton hydrazine monopropellant thrusters. Altitude during landing was measured by a doppler radar system, and an attitude and articulation control subsystem (AACS) controlled the attitude to ensure the spacecraft landed at the optimal azimuth to maximize solar collection and telecommunication with the lander. [3] [6] [7]

The lander was launched with two hydrazine tanks containing 64 kilograms of propellant and pressurized using helium. Each spherical tank was located at the underside of the lander and provided propellant during the cruise and descent stages. [3] [6] [7]

Communications

During the cruise stage, communications with the spacecraft were conducted over the X band using a medium-gain, horn-shaped antenna and redundant solid state power amplifiers. For contingency measures, a low-gain omni-directional antenna was also included. [3]

The lander was originally intended to communicate data through the failed Mars Climate Orbiter via the UHF antenna. With the orbiter lost on September 23, 1999, the lander would still be able to communicate directly to the Deep Space Network through the Direct-To-Earth (DTE) link, an X band, steerable, medium-gain, parabolic antenna located on the deck. Alternatively, Mars Global Surveyor could be used as a relay using the UHF antenna at multiple times each Martian day. However the Deep Space Network could only receive data from, and not send commands to, the lander using this method. The direct-to-Earth medium-gain antenna provided a 12.6-kbit/s return channel, and the UHF relay path provided a 128-kbit/s return channel. Communications with the spacecraft would be limited to one-hour events, constrained by heat-buildup that would occur in the amplifiers. The number of communication events would also be constrained by power limitations. [3] [5] [6] [7]

Power

The cruise stage included two gallium arsenide solar arrays to power the radio system and maintain power to the batteries in the lander, which kept certain electronics warm. [3] [6]

After descending to the surface, the lander was to deploy two 3.6-meter-wide gallium arsenide solar arrays, located on either side of the spacecraft. Another two auxiliary solar arrays were located on the side to provide additional power for a total of an expected 200 watts and approximately eight to nine hours of operating time per day. [3] [6]

While the Sun would not have set below the horizon during the primary mission, too little light would have reached the solar arrays to remain warm enough for certain electronics to continue functioning. To avoid this problem, a 16-amp-hour nickel hydrogen battery was included to be recharged during the day and to power the heater for the thermal enclosure at night. This solution also was expected to limit the life of the lander. As the Martian days would grow colder in late summer, too little power would be supplied to the heater to avoid freezing, resulting in the battery also freezing and signaling the end of the operating life for the lander. [3] [6] [7]

Scientific instruments

Mars Descent Imager (MARDI)
Mounted to the bottom of the lander, the camera was intended to capture 30 images as the spacecraft descended to the surface. The images acquired would be used to provide geographic and geologic context to the landing area. [8]
Surface Stereo Imager (SSI)
Using a pair of charge coupled devices (CCD), the stereo panoramic camera was mounted to a one-meter-tall mast and would aid in the thermal evolved gas analyzer in determining areas of interest for the robotic arm. In addition, the camera would be used to estimate the column density of atmospheric dust, the optical depth of aerosols, and slant column abundances of water vapor using narrow-band imaging of the Sun. [9]
Light Detection and Ranging (LIDAR)
The laser sounding instrument was intended to detect and characterize aerosols in the atmosphere up to three kilometers above the lander. The instrument operated in two modes: active mode, using an included laser diode, and acoustic mode, using the Sun as the light source for the sensor. In active mode, the laser sounder was to emit 100-nanosecond pulses at a wavelength of 0.88-micrometer into the atmosphere, and then record the duration of time to detect the light scattered by aerosols. The duration of time required for the light to return could then be used to determine the abundance of ice, dust and other aerosols in the region. In acoustic mode, the instrument measures the brightness of the sky as lit by the Sun and records the scattering of light as it passes to the sensor. [10]
Robotic Arm (RA)
Located on the front of the lander, the robotic arm was a meter-long aluminum tube with an elbow joint and an articulated scoop attached to the end. The scoop was intended to be used to dig into the soil in the direct vicinity of the lander. The soil could then be analyzed in the scoop with the robotic arm camera or transferred into the thermal evolved gas analyzer. [9]
Robotic Arm Camera (RAC)
Located on the robotic arm, the charge coupled camera included two red, two green, and four blue lamps to illuminate soil samples for analysis. [9]
Meteorological Package (MET)
Several instruments related to sensing and recording weather patterns, were included in the package. Wind, temperature, pressure, and humidity sensors were located on the robotic arm and two deployable masts: a 1.2-meter main mast, located on top of the lander, and a 0.9-meter secondary submast that would deploy downward to acquire measurements close to the ground. [9]
Thermal and Evolved Gas Analyzer (TEGA)
The instrument was intended to measure abundances of water, water ice, adsorbed carbon dioxide, oxygen, and volatile-bearing minerals in surface and subsurface soil samples collected and transferred by the robotic arm. Materials placed onto a grate inside one of the eight ovens, would be heated and vaporized at 1,000 °C. The evolved gas analyzer would then record measurements using a spectrometer and an electrochemical cell. For calibration, an empty oven would also be heated during this process for differential scanning calorimetry. The difference in the energy required to heat each oven would then indicate concentrations of water ice and other minerals containing water or carbon dioxide. [9]
Mars Microphone
The microphone was intended to be the first instrument to record sounds on another planet. Primarily composed of a microphone generally used with hearing aids, the instrument was expected to record sounds of blowing dust, electrical discharges and the sounds of the operating spacecraft in either 2.6-second or 10.6-second, 12-bit samples. [11] The microphone was built using off-the-shelf parts including a Sensory, Inc. RSC-164 integrated circuit typically used in speech-recognition devices. [12]

Mission profile

Timeline of observations

DateEvent

1999-01-03
Spacecraft launched at 20:21:10 UTC
1999-12-03
1999-12-03
2000-01-17
Mission declared a loss. No further attempts to contact.

Launch and trajectory

Mars Polar Lander was launched on January 3, 1999, at 20:21:10 UTC by the National Aeronautics and Space Administration from Space Launch Complex 17B at the Cape Canaveral Air Force Station in Florida, aboard a Delta II 7425 launch vehicle. The complete burn sequence lasted for 47.7 minutes after a Thiokol Star 48B solid-fuel third stage booster placed the spacecraft into an 11-month, Mars transfer trajectory at a final velocity of 6.884 kilometers per second with respect to Mars. During cruise, the spacecraft was stowed inside an aeroshell capsule and a segment known as the cruise stage provided power and communications with Earth. [3] [5] [6]

Landing zone

The target landing zone was a region near the south pole of Mars, called Ultimi Scopuli, because it featured a large number of scopuli (lobate or irregular scarps).[ citation needed ]

Landing attempt

Mars Polar Lander - cruise configuration.png
Cruise configuration
Mars Polar Lander - landing diagram.png
Landing procedure
Mars Polar Lander - targeted landing sector.png
Landing region
Mars Polar Lander entered the Martian atmosphere with an aeroshell for protection from atmospheric friction.

On December 3, 1999, Mars Polar Lander arrived at Mars and mission operators began preparations for landing. At 14:39:00 UTC, the cruise stage was jettisoned, which began a planned communication dropout to last until the spacecraft had touched down on the surface. Six minutes prior to atmospheric entry, a programmed 80-second thruster firing turned the spacecraft to the proper entry orientation, with the heat shield positioned to absorb the 1,650 °C heat that would be generated as the descent capsule passed through the atmosphere.

Traveling at 6.9 kilometers per second, the entry capsule entered the Martian atmosphere at 20:10:00 UTC, and was expected to land in the vicinity of 76°S195°W / 76°S 195°W / -76; -195 (Mars Polar Lander) in a region known as Planum Australe. Reestablishment of communication was anticipated for 20:39:00 UTC, after landing. However communication was not reestablished, and the lander was declared lost. [3] [5] [6]

On May 25, 2008 the Phoenix lander arrived at Mars, and has subsequently completed most of the objectives of the Mars Polar Lander, carrying several of the same or derivative instruments.

(view * discuss)
Interactive image map of the global topography of Mars, overlain with locations of Mars Lander and Rover sites. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to -8 km). Axes are latitude and longitude; Polar regions are noted.
(See also: Mars map; Mars Memorials map / list)
(
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Active ROVER *
Inactive *
Active LANDER *
Inactive *
Future ) Mars Map.JPGCydonia MensaeGale craterHolden craterJezero craterLomonosov craterLyot craterMalea PlanumMaraldi craterMareotis TempeMie craterMilankovič craterSisyphi Planum
Interactive icon.svg Interactive image map of the global topography of Mars, overlain with locations of Mars Lander and Rover sites. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor . Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to −8 km). Axes are latitude and longitude; Polar regions are noted.
(    Active ROVER   Inactive   Active LANDER   Inactive   Future )
PhoenixIcon.png
Beagle 2 (2003)
CuriosityIcon.png
Curiosity (2012)
PhoenixIcon.png
Deep Space 2 (1999)
RoverIcon.png
Rosalind Franklin rover (2023)
PhoenixIcon.png
InSight (2018)
Mars3Icon.png
Mars 2 (1971)
Mars3Icon.png
Mars 3 (1971)
Mars3Icon.png
Mars 6 (1973)
PhoenixIcon.png
Polar Lander (1999)
RoverIcon.png
Opportunity (2004)
CuriosityIcon.png
Perseverance (2021)
PhoenixIcon.png
Phoenix (2008)
EDMIcon.png
Schiaparelli EDM (2016)
SojournerIcon.png
Sojourner (1997)
RoverIcon.png
Spirit (2004)
ZhurongIcon.png
Zhurong (2021)
VikingIcon.png
Viking 1 (1976)
VikingIcon.png
Viking 2 (1976)

Intended operations

Traveling at approximately 6.9 kilometers/second and 125 kilometers above the surface, the spacecraft entered the atmosphere and was initially decelerated by using a 2.4 meter ablation heat shield, located on the bottom of the entry body, to aerobrake through 116 kilometers of the atmosphere. Three minutes after entry, the spacecraft had slowed to 496 meters per second signaling an 8.4-meter, polyester parachute to deploy from a mortar followed immediately by heat shield separation and MARDI powering on, while 8.8 kilometers above the surface. The parachute further slowed the speed of the spacecraft to 85 meters per second when the ground radar began tracking surface features to detect the best possible landing location.

When the spacecraft had slowed to 80 meters per second, one minute after parachute deployment, the lander separated from the backshell and began a powered descent while 1.3 kilometers aloft. The powered descent was expected to have lasted approximately one minute, bringing the spacecraft 12 meters above the surface. The engines were then shut off and the spacecraft would expectedly fall to the surface and land at 20:15:00 UTC near 76°S 195°W in Planum Australe. [3] [5] [6] [7]

Lander operations were to begin five minutes after touchdown, first unfolding the stowed solar arrays, followed by orienting the medium-gain, direct-to-Earth antenna to allow for the first communication with the Deep Space Network. At 20:39 UTC, a 45-minute transmission was to be broadcast to Earth, transmitting the expected 30 landing images acquired by MARDI and signaling a successful landing. The lander would then power down for six hours to allow the batteries to charge. On the following days, the spacecraft instruments would be checked by operators and science experiments were to begin on December 7 and last for at least the following 90 Martian Sols, with the possibility of an extended mission. [3] [5] [6] [7]

Loss of communications

On December 3, 1999, at 14:39:00 UTC, the last telemetry from Mars Polar Lander was sent, just prior to cruise stage separation and the subsequent atmospheric entry. No further signals were received from the spacecraft. Attempts were made by Mars Global Surveyor to photograph the area in which the lander was believed to be. An object was visible and believed to be the lander. However, subsequent imaging performed by Mars Reconnaissance Orbiter resulted in the identified object being ruled out. Mars Polar Lander remains lost. [13] [14]

The cause of the communication loss is not known. However, the Failure Review Board concluded that the most likely cause of the mishap was a software error that incorrectly identified vibrations, caused by the deployment of the stowed legs, as surface touchdown. [15] The resulting action by the spacecraft was the shutdown of the descent engines, while still likely 40 meters above the surface. Although it was known that leg deployment could create the false indication, the software's design instructions did not account for that eventuality. [16]

In addition to the premature shutdown of the descent engines, the Failure Review Board also assessed other potential modes of failure. [1] Lacking substantial evidence for the mode of failure, the following possibilities could not be excluded:

The failure of the Mars Polar Lander took place two and a half months after the loss of the Mars Climate Orbiter. Inadequate funding and poor management have been cited as underlying causes of the failures. [17] According to Thomas Young, chairman of the Mars Program Independent Assessment Team, the program "was under funded by at least 30%." [18]

Quoted from the report [1]

"A magnetic sensor is provided in each of the three landing legs to sense touchdown when the lander contacts the surface, initiating the shutdown of the descent engines. Data from MPL engineering development unit deployment tests, MPL flight unit deployment tests, and Mars 2001 deployment tests showed that a spurious touchdown indication occurs in the Hall Effect touchdown sensor during landing leg deployment (while the lander is connected to the parachute). The software logic accepts this transient signal as a valid touchdown event if it persists for two consecutive readings of the sensor. The tests showed that most of the transient signals at leg deployment are indeed long enough to be accepted as valid events, therefore, it is almost a certainty that at least one of the three would have generated a spurious touchdown indication that the software accepted as valid.

The software—intended to ignore touchdown indications prior to the enabling of the touchdown sensing logic—was not properly implemented, and the spurious touchdown indication was retained. The touchdown sensing logic is enabled at 40 meters altitude, and the software would have issued a descent engine thrust termination at this time in response to a (spurious) touchdown indication.

At 40 meters altitude, the lander has a velocity of approximately 13 meters per second, which, in the absence of thrust, is accelerated by Mars gravity to a surface impact velocity of approximately 22 meters per second (the nominal touchdown velocity is 2.4 meters per second). At this impact velocity, the lander could not have survived."

See also

Related Research Articles

Viking program Pair of NASA landers and orbiters sent to Mars in 1976

The Viking program consisted of a pair of identical American space probes, Viking 1 and Viking 2, which landed on Mars in 1976. Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars from orbit, and a lander designed to study the planet from the surface. The orbiters also served as communication relays for the landers once they touched down.

The Mars program was a series of uncrewed spacecraft launched by the Soviet Union between 1960 and 1973. The spacecraft were intended to explore Mars, and included flyby probes, landers and orbiters.

<i>Viking 1</i> robotic spacecraft sent to Mars

Viking 1 was the first of two spacecraft, along with Viking 2, each consisting of an orbiter and a lander, sent to Mars as part of NASA's Viking program. The lander touched down on Mars on 20 July 1976, the first successful Mars lander in history. Viking 1 operated on Mars 2307 days or 2245 Martian solar days, the longest Mars surface mission until the record was broken by the Opportunity rover on 19 May 2010.

Mars 2 Soviet space probe launched in 1971, consisting of a Mars orbiter and lander

The Mars 2 was an uncrewed space probe of the Mars program, a series of uncrewed Mars landers and orbiters launched by the Soviet Union beginning 19 May 1971. The Mars 2 and Mars 3 missions consisted of identical spacecraft, each with an orbiter and an attached lander. The orbiter is identical to the Venera 9 bus. The type of bus/orbiter is the 4MV. They were launched by a Proton-K heavy launch vehicle with a Blok D upper stage. The lander of Mars 2 became the first human-made object to reach the surface of Mars, although the landing system failed and the lander was lost.

Mars 3

Mars 3 was a robotic space probe of the Soviet Mars program, launched May 28, 1971, nine days after its twin spacecraft Mars 2. The probes were identical robotic spacecraft launched by Proton-K rockets with a Blok D upper stage, each consisting of an orbiter and an attached lander. After the Mars 2 lander crashed on the Martian surface, the Mars 3 lander became the first spacecraft to attain a soft landing on Mars, on December 2, 1971. It failed 110 seconds after landing, having transmitted only a gray image with no details. The Mars 2 orbiter and Mars 3 orbiter continued to circle Mars and transmit images back to Earth for another eight months.

<i>Mars Express</i> European Mars orbiter

Mars Express is a space exploration mission being conducted by the European Space Agency (ESA). The Mars Express mission is exploring the planet Mars, and is the first planetary mission attempted by the agency. "Express" originally referred to the speed and efficiency with which the spacecraft was designed and built. However "Express" also describes the spacecraft's relatively short interplanetary voyage, a result of being launched when the orbits of Earth and Mars brought them closer than they had been in about 60,000 years.

Lander (spacecraft) Type of spacecraft

A lander is a spacecraft that descends towards, and comes to rest on, the surface of an astronomical body. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.

<i>Beagle 2</i> Failed Mars lander launched in 2003

The Beagle 2 is an inoperative British Mars lander that was transported by the European Space Agency's 2003 Mars Express mission. It was intended for an astrobiology mission that would have looked for past life from the surface to 1.5 metres below the exterior of Mars.

<i>Mars Climate Orbiter</i> Robotic space probe launched by NASA on December 11, 1998

The Mars Climate Orbiter was a 638-kilogram (1,407 lb) robotic space probe launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and surface changes and to act as the communications relay in the Mars Surveyor '98 program for Mars Polar Lander. However, on September 23, 1999, communication with the spacecraft was permanently lost as it went into orbital insertion. The spacecraft encountered Mars on a trajectory that brought it too close to the planet, and it was either destroyed in the atmosphere or escaped the planet's vicinity and entered an orbit around the Sun. An investigation attributed the failure to a measurement mismatch between two software systems: metric units by NASA and US Customary units by spacecraft builder Lockheed Martin.

Exploration of Mars Overview of the exploration of Mars

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin. Some missions have met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity which operated for years beyond their specification.

Deep Space 2

Deep Space 2 was a NASA probe part of the New Millennium Program. It included two highly advanced miniature space probes that were sent to Mars aboard the Mars Polar Lander in January 1999. The probes were named "Scott" and "Amundsen", in honor of Robert Falcon Scott and Roald Amundsen, the first explorers to reach the Earth's South Pole. Intended to be the first spacecraft to penetrate below the surface of another planet, after entering the Mars atmosphere DS2 was to detach from the Mars Polar Lander mother ship and plummet to the surface using only an aeroshell impactor, with no parachute. The mission was declared a failure on March 13, 2000, after all attempts to reestablish communications following the descent went unanswered.

Mars 96 Failed Mars mission

Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.

<i>Mars Reconnaissance Orbiter</i> NASA Mars orbiter launched in 2005, still operational

Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005 and reached Mars on March 10, 2006. In November 2006, after five months of aerobraking, it entered its final science orbit and began its primary science phase. The cost to develop and operate MRO through the end of its prime mission in 2010 was US$716.6 million.

<i>Phoenix</i> (spacecraft) NASA Mars lander

Phoenix was an uncrewed space probe that landed on the surface of Mars on May 25, 2008 and operated until November 2, 2008. Phoenix was operational on Mars for 157 sols. Its instruments were used to assess the local habitability and to research the history of water on Mars. The mission was part of the Mars Scout Program; its total cost was $420 million, including the cost of launch.

Mars Surveyor 2001 Cancelled NASA spaceflight mission in the Mars Exploration Program

The Mars Surveyor 2001 project was a multi-part Mars exploration mission intended as a follow-up to Mars Surveyor '98. After the two probes of the 1998 project, Mars Climate Orbiter and Mars Polar Lander, were both lost, NASA's "better, faster, cheaper" exploration philosophy was re-evaluated, with a particular eye on the two 2001 project probes. As a result, the mission, along with the launch of its lander and rover, were canceled in May 2000, but the decision was made to continue development with its orbiter counterpart. The orbiter launched as 2001 Mars Odyssey in April 2001, in a mission independent of the Mars Surveyor project, and reached Mars in October 2001. After being placed in a cleanroom in 2001 and stored since, the nearly-completed lander component was eventually reused to fly the Phoenix mission, which launched in August 2007 and landed successfully on Mars in May 2008.

Mars landing Landing of a spacecraft on the surface of Mars

A Mars landing is a landing of a spacecraft on the surface of Mars. Of multiple attempted Mars landings by robotic, uncrewed spacecraft, ten have had successful soft landings. There have also been studies for a possible human mission to Mars, including a landing, but none have been attempted. Soviet Union’s Mars 3, which landed in 1971, was the first successful Mars landing. As of May 2021, Soviet Union,and United States have conducted Mars landing successfully.

Northern Light (spacecraft) Cancelled Canadian Mars lander and rover mission

Northern Light was a concept mission for a robotic mission to Mars that would consist of a lander and a rover, being studied by a consortium of Canadian universities, companies and organisations. The primary contractor for the spacecraft was Thoth Technology Inc.

InSight Mars lander, arrived November 2018

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission is a robotic lander designed to study the deep interior of the planet Mars. It was manufactured by Lockheed Martin Space Systems, is managed by NASA's Jet Propulsion Laboratory, and most of its scientific instruments were built by European agencies. The mission launched on 5 May 2018 at 11:05 UTC aboard an Atlas V-401 rocket and successfully landed at Elysium Planitia on Mars on 26 November 2018 at 19:52:59 UTC. InSight traveled 483 million km (300 million mi) during its journey. As of October 8, 2021, InSight has been active on Mars for 1019 sols.

Mars Geyser Hopper

The Mars Geyser Hopper (MGH) is a NASA design reference mission for a Discovery-class spacecraft concept that would investigate the springtime carbon dioxide Martian geysers found in regions around the south pole of Mars.

<i>Schiaparelli</i> EDM A Mars landing demonstration system

Schiaparelli EDM was a failed Entry, Descent, and Landing Demonstrator Module (EDM) of the ExoMars programme—a joint mission of the European Space Agency (ESA) and the Russian space agency Roscosmos. It was built in Italy and was intended to test technology for future soft landings on the surface of Mars. It also had a limited but focused science payload that would have measured atmospheric electricity on Mars and local meteorological conditions.

References

  1. 1 2 3 "Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions" (PDF). Jet Propulsion Laboratory. March 22, 2000. Archived from the original (PDF) on 2011-03-16.
  2. 1 2 "Mars Polar Lander Mission Costs". The Associated Press. December 8, 1999. Retrieved 2020-09-30.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "1998 Mars Missions Press Kit" (PDF) (Press release). NASA. 1998. Retrieved 2011-03-12.
  4. Huh, Ben (March 3, 1998). "Kids' Names Going To Mars". Sun Sentinel. Retrieved 2013-05-30.
  5. 1 2 3 4 5 6 "Mars Polar Lander/Deep Space 2 Press Kit" (PDF) (Press release). NASA. 1999. Retrieved 2011-03-12.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 "Mars Polar Lander". NASA/National Space Science Data Center. Retrieved 2011-03-12.
  7. 1 2 3 4 5 6 7 "MPL: Lander Flight System Description". NASA / JPL. 1998. Archived from the original on 2011-07-21. Retrieved 2011-03-12.
  8. "Mars Descent Imager (MARDI)". NASA/National Space Science Data Center. Retrieved 2011-03-17.
  9. 1 2 3 4 5 "Mars Volatiles and Climate Surveyor (MVACS)". NASA/National Space Science Data Center. Retrieved 2011-03-17.
  10. "Light Detection and Ranging (LIDAR)". NASA/National Space Science Data Center. Retrieved 2011-03-17.
  11. "Mars Microphone". NASA/National Space Science Data Center. Retrieved 2011-03-17.
  12. "Projects: Planetary Microphones -- The Mars Microphone". The Planetary Society. Archived from the original on 2006-08-18.
  13. Editors (May 6, 2005). "Mars Polar Lander Found at Last?". Sky and Telescope . Archived from the original on 2008-07-23. Retrieved 2009-04-22.CS1 maint: extra text: authors list (link)
  14. "Release No. MOC2-1253: Mars Polar Lander NOT Found". Mars Global Surveyor / Mars Orbiter Camera. NASA/JPL/Malin Space Science Systems. October 17, 2005. Archived from the original on 2008-12-07. Retrieved 2009-04-22.
  15. NASA 3: Mission Failures. Youtube.
  16. Nancy G. Leveson. "The Role of Software in Recent Aerospace Accidents" (PDF).Cite journal requires |journal= (help)
  17. Thomas Young (March 14, 2000). "Mars Program Independent Assessment Team Summary Report". Draft #7 3/13/00. House Science and Technology Committee. Retrieved 2009-04-22.Cite journal requires |journal= (help)
  18. Jeffrey Kaye (April 14, 2000). "NASA in the Hot Seat" (transcript). NewsHour with Jim Lehrer. PBS. Retrieved 2009-04-22.

Further reading