EscaPADE

Last updated
EscaPADE
Mission type Mars orbiter
Website escapade.ssl.berkeley.edu
Spacecraft properties
SpacecraftBlue and Gold
Manufacturer Rocket Lab
Power Solar panels
Start of mission
Launch date29 September 2024 (planned) [1]
Rocket New Glenn
Launch site Cape Canaveral LC-36
Contractor Blue Origin
 

Escape and Plasma Acceleration and Dynamics Explorers (EscaPADE) is a planned spacecraft mission to Mars consisting of two spacecraft known as Blue and Gold. [2] [3] The mission, expected to launch in August 2024, is part of NASA's SIMPLEx program. [1] [4]

Contents

Mission

EscaPADE is led by Principal Investigator Dr. Robert Lillis and colleagues at the University of California, Berkeley. The spacecraft is being built by Rocket Lab based on their "Explorer" spacecraft bus. [5] At an anticipated cost of $79 million (including launch vehicle), the mission will demonstrate low-cost planetary space exploration. The twin spacecraft will study Mars' unique magnetosphere and how solar wind contributed to the loss of most of the planet's atmosphere over solar system history.

Launch

The Small Innovative Missions for Planetary Exploration ("SIMPLEx") program [6] was intended as a program to select small, low-cost space missions to fly as secondary payloads on other NASA missions. As a ride-along mission on another launch, not a main mission, they were intended to have low cost and tolerate a higher level of risk than other NASA missions.

EscaPADE was originally selected from a competition to be a low-cost ride-along "mission of opportunity" to hitch a ride to Mars with the Psyche spacecraft, and drop off as the spacecraft made a fly-by of Mars. Thus, it had an anticipated launch cost of nearly nothing. However, the launch of the Psyche mission was delayed, which meant that when Psyche passes the orbit of Mars, Mars is no longer near the trajectory of Psyche. [6] Rather than cancel the mission, NASA announced that it would go on a different launch vehicle, and requested bids from industry for the launch.

In February 2023, Blue Origin won the contract to launch the mission on the first flight of the New Glenn launch vehicle in September 2024, at a cost of ~$20 million. [4]

Spacecraft

Each identical EscaPADE spacecraft has a dry mass of ~200 kg, with a wet mass of <550 kg. The spacecraft bus is originally adapted from the Rocket Lab Explorer (Photon) third stage and is approximately 60 x 70 x 90 cm. The spacecraft is powered by two 480 x 70 cm solar array wings. Chemical propulsion is provided by thrusters from ArianeSpace. [7] Reaction wheels, inertial measurement units, and star trackers are used to maintain orientation, with cold gas thrusters to desaturate the wheels. Communications are in X-band via a 60 cm diameter dish antenna. A 200 cm boom extends above the spacecraft, hosting the EMAG and ELP mNLP sensors. [3]

After launch, EscaPADE will be directly injected onto an interplanetary trajectory in mid-late September 2024. It will execute one major and a number of minor propulsive maneuvers during its 11 month cruise to Mars. The twin probes will reach Mars in early September 2025 and go into a highly elliptical orbit. Over the following six months the orbit will be lowered and circularized until it reaches the nominal science orbit.

Instruments and science goals

The science goals of EscaPADE are to: [3]

There are three science experiments onboard each identical spacecraft, EMAG, EESA, and ELP. EMAG is a magnetometer that will measure DC magnetic fields up to 1000 nT, mounted at the end of the boom to reduce magnetic noise from the spacecraft. EESA is an electrostatic analyzer designed to measure the energies, fluxes, and masses of suprathermal ions from 2 eV to 20 keV and energies and fluxes of suprathermal electrons from 3 eV to 10 keV. It is mounted on the upper deck of the spacecraft bus, with a 240° x 120° field of view for electrons and 247.5° x 90° field of view for ions. ELP is a Langmuir probe, consisting of three separate sensors: the multi-needle Langmuir probe (mNLP) consists of 4 thin needles mounted in two pairs ~3/4 way up the boom and measures thermal electron density; the two planar ion probes (PIPs) are mounted on the instrument deck and measure thermal ion density, and the floating potential probe (FPP) is also mounted on the spacecraft deck, and measures changes in relative spacecraft electrostatic potential.

Once the nominal science orbit is achieved, approximately six months after arriving at Mars, Science Campaign A involves both spacecraft flying in the same orbit at varying distance from one another, ~170 x 8400 km (5.66 hours) with an inclination of 65 degrees. This will last approximately 6 months, at which time Blue will lower its apoapsis to 7000 km and Gold will raise its apoapsis to 10,000 km. With different orbital periods (4.9 and 6.6 hours), the orbits will precess (due to Mars' nonuniform gravity field) at different rates, and thus separate, allowing simultaneous measurements of distant parts of the Mars magnetosphere. This campaign will operate for approximately 5 months, until the end of the nominal science mission in early March 2027. [3]

Further reading

See also

Related Research Articles

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. An ion thruster creates a cloud of positive ions from a neutral gas by ionizing it to extract some electrons from its atoms. The ions are then accelerated using electricity to create thrust. Ion thrusters are categorized as either electrostatic or electromagnetic.

<span class="mw-page-title-main">Uncrewed spacecraft</span> Spacecraft without people on board

Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input; they may be remote controlled, remote guided or autonomous: they have a pre-programmed list of operations, which they will execute unless otherwise instructed. A robotic spacecraft for scientific measurements is often called a space probe or space observatory.

<span class="mw-page-title-main">Exploration of Mars</span> Overview of the exploration of Mars

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions, with some failing before their observations could even begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.

<i>Nozomi</i> (spacecraft) Failed Mars orbiter

Nozomi was a Japanese Mars orbiter that failed to reach Mars due to electrical failure. It was constructed by the Institute of Space and Astronautical Science, University of Tokyo and launched on July 4, 1998, at 03:12 JST with an on-orbit dry mass of 258 kg and 282 kg of propellant. The Nozomi mission was terminated on December 31, 2003.

<span class="mw-page-title-main">Mars 96</span> Failed Mars mission

Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.

<span class="mw-page-title-main">Discovery Program</span> Ongoing solar system exploration program by NASA

The Discovery Program is a series of Solar System exploration missions funded by the U.S. National Aeronautics and Space Administration (NASA) through its Planetary Missions Program Office. The cost of each mission is capped at a lower level than missions from NASA's New Frontiers or Flagship Programs. As a result, Discovery missions tend to be more focused on a specific scientific goal rather than serving a general purpose.

<span class="mw-page-title-main">BepiColombo</span> European–Japanese satellites heading to Mercury

BepiColombo is a joint mission of the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) to the planet Mercury. The mission comprises two satellites launched together: the Mercury Planetary Orbiter (MPO) and Mio. The mission will perform a comprehensive study of Mercury, including characterization of its magnetic field, magnetosphere, and both interior and surface structure. It was launched on an Ariane 5 rocket on 20 October 2018 at 01:45 UTC, with an arrival at Mercury planned for on 5 December 2025, after a flyby of Earth, two flybys of Venus, and six flybys of Mercury. The mission was approved in November 2009, after years in proposal and planning as part of the European Space Agency's Horizon 2000+ programme; it is the last mission of the programme to be launched.

<span class="mw-page-title-main">Blue Origin</span> American aerospace company

Blue Origin Enterprises, L.P., commonly referred to as Blue Origin is an American aerospace manufacturer, defense contractor, launch service provider and space technologies company headquartered in Kent, Washington, United States. The company makes rocket engines for United Launch Alliance (ULA)'s Vulcan rocket and manufactures their own rockets, spacecraft, satellites, and heavy-lift launch vehicles. The company is the second provider of lunar lander services for NASA's Artemis program and was awarded a $3.4 billion contract. The four rocket engines the company has in production are the BE-3U, BE-3PM, BE-4 and the BE-7.

<span class="mw-page-title-main">Outline of space exploration</span> Overview of and topical guide to space exploration

The following outline is provided as an overview of and topical guide to space exploration.

<i>Psyche</i> (spacecraft) Reconnaissance mission of the main belt asteroid 16 Psyche

Psyche is a NASA Discovery Program space mission launched on October 13, 2023 to explore the origin of planetary cores by orbiting and studying the metallic asteroid 16 Psyche beginning in 2029. NASA's Jet Propulsion Laboratory (JPL) manages the project.

The future of space exploration involves both telescopic exploration and the physical exploration of space by robotic spacecraft and human spaceflight.

<span class="mw-page-title-main">2024 in spaceflight</span> Spaceflight-related events during the year 2024

The year 2024 is expected to exceed 2023's 223 orbital launches. So far, the year saw the successful first launch of Vulcan Centaur, Gravity-1, and notably the third developmental launch of SpaceX's Starship – IFT-3. Additionally, the final launch of a Delta family rocket occurred in April 2024 with a Delta IV Heavy. Following 2020s' trend, it is expected that many more privately-developed launch vehicles will feature a maiden launch in 2024.

<span class="mw-page-title-main">Interstellar Mapping and Acceleration Probe</span> Planned NASA heliophysics mission

The Interstellar Mapping and Acceleration Probe(IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in late April to late May 2025. IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the Sun–Earth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.

<span class="mw-page-title-main">Rocket Lab Photon</span> Photon is a satellite bus made by Rocket Lab

Photon is a satellite bus based on Rocket Lab's kick stage.

<span class="mw-page-title-main">Shannon Curry</span> American planetary physicist

Shannon Curry is a planetary physicist and the Principal Investigator of the NASA Mars Scout mission MAVEN. Dr. Curry is a researcher at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and an Associate Professor in the university's Astrophysics and Planetary Sciences (APS) Department. Prior to this, she served as the Deputy Assistant Director of Planetary Science at the Space Sciences Laboratory at the University of California, Berkeley.

<span class="mw-page-title-main">Small Innovative Missions for Planetary Exploration</span> NASA program

Small Innovative Missions for Planetary Exploration (SIMPLEx) is a planetary exploration program operated by NASA. The program funds small, low-cost spacecraft for stand-alone planetary exploration missions. These spacecraft are intended to launch as secondary payloads on other missions and are riskier than Discovery or New Frontiers missions.

References

  1. 1 2 Foust, Jeff (13 April 2023). "ESCAPADE confident in planned 2024 New Glenn launch". SpaceNews . Retrieved 14 April 2023.
  2. Sanders, Robert (2021-08-23). "'Blue' and 'Gold' satellites headed to Mars in 2024". Berkeley News. Retrieved 2023-02-11.
  3. 1 2 3 4 "NASA – NSSDCA – Spacecraft – Details". NSSDC . NASA . Retrieved 2023-02-11.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. 1 2 Clark, Robert (Nov. 22, 2023). "NASA will launch a Mars mission on Blue Origin’s first New Glenn rocket", Ars Technica. Retrieved 23 Nov. 2023.
  5. Hatfield, Miles (August 20, 2021). "NASA’s ESCAPADE Mission – Twin Martian Orbiters – Moves Toward Launch," NASA. Retrieved 23 Nov. 2023.
  6. 1 2 Foust, Jeff (February 20, 2023). "Trials and tribulations of planetary smallsats", The Space Review. Retrieved 23 Nov. 2023.
  7. 73 International Astronautical Congress (IAC) (18 September 2022), ESCAPADE: A Low-Cost Formation at Mars, Retrieved 21 October 2023