Venus Life Finder

Last updated

Related Research Articles

<span class="mw-page-title-main">Venus</span> Second planet from the Sun

Venus is the second planet from the Sun. It is a terrestrial planet and is the closest in mass and size to its orbital neighbour Earth. Venus has by far the densest atmosphere of the terrestrial planets, composed mostly of carbon dioxide with a thick, global sulfuric acid cloud cover. At the surface it has a mean temperature of 737 K and a pressure 92 times that of Earth's at sea level. These extreme conditions compress carbon dioxide into a supercritical state at Venus's surface.

<span class="mw-page-title-main">Mariner 1</span> Failed NASA mission to Venus (1962)

Mariner 1, built to conduct the first American planetary flyby of Venus, was the first spacecraft of NASA's interplanetary Mariner program. Developed by Jet Propulsion Laboratory, and originally planned to be a purpose-built probe launched summer 1962, Mariner 1's design was changed when the Centaur proved unavailable at that early date. Mariner 1, were then adapted from the lighter Ranger lunar spacecraft. Mariner 1 carried a suite of experiments to determine the temperature of Venus as well to measure magnetic fields and charged particles near the planet and in interplanetary space.

<span class="mw-page-title-main">Venera</span> Soviet program that explored Venus with multiple probes

The Venera program was a series of space probes developed by the Soviet Union between 1961 and 1984 to gather information about the planet Venus.

<span class="mw-page-title-main">Pioneer Venus project</span> Two spacecraft sent to Venus in 1978

The Pioneer Venus project was part of the Pioneer program consisting of two spacecraft, the Pioneer Venus Orbiter and the Pioneer Venus Multiprobe, launched to Venus in 1978. The program was managed by NASA's Ames Research Center.

<span class="mw-page-title-main">Venera 9</span> 1975 Soviet uncrewed space mission to Venus

Venera 9, manufacturer's designation: 4V-1 No. 660, was a Soviet uncrewed space mission to Venus. It consisted of an orbiter and a lander. It was launched on June 8, 1975, at 02:38:00 UTC and had a mass of 4,936 kilograms (10,882 lb). The orbiter was the first spacecraft to orbit Venus, while the lander was the first to return images from the surface of another planet.

<span class="mw-page-title-main">Venera 10</span> Space probe

Venera 10, or 4V-1 No. 661, was a Soviet uncrewed space mission to Venus. It consisted of an orbiter and a lander. It was launched on June 14, 1975, 03:00:31 UTC and had a mass of 5033 kg (11096 lb).

<span class="mw-page-title-main">Pioneer Venus Multiprobe</span> NASA atmospheric mission to Venus (1978)

The Pioneer Venus Multiprobe, also known as Pioneer Venus 2 or Pioneer 13, was a spacecraft launched in 1978 to explore Venus as part of NASA's Pioneer program. This part of the mission included a spacecraft bus which was launched from Earth carrying one large and three smaller probes, which after separating penetrated the Venusian atmosphere at a different location, returning data as they descended into the planet's thick atmosphere. The entry occurred on December 9, 1978.

<span class="mw-page-title-main">Venera 7</span> Soviet Venus spacecraft

Venera 7 was a Soviet spacecraft, part of the Venera series of probes to Venus. When it landed the Venusian surface on 15 December 1970, it became the first spacecraft to soft land on another planet and the first to transmit data from there back to Earth.

<span class="mw-page-title-main">Venera 13</span> Soviet space probe that landed on Venus in 1982

Venera 13 was part of the Soviet Venera program meant to explore Venus.

<i>Akatsuki</i> (spacecraft) Japanese orbiter mission to Venus (2010–2024)

Akatsuki, also known as the Venus Climate Orbiter (VCO) and Planet-C, was a Japan Aerospace Exploration Agency (JAXA) space probe tasked with studying the atmosphere of Venus. It was launched aboard an H-IIA 202 rocket on 20 May 2010, but failed to enter orbit around Venus on 6 December 2010. After the craft orbited the Sun for five years, engineers successfully placed it into an alternative Venusian elliptic orbit on 7 December 2015 by firing its attitude control thrusters for 20 minutes and made it the first Japanese satellite orbiting Venus.

<span class="mw-page-title-main">Observations and explorations of Venus</span>

Observations of the planet Venus include those in antiquity, telescopic observations, and from visiting spacecraft. Spacecraft have performed various flybys, orbits, and landings on Venus, including balloon probes that floated in the atmosphere of Venus. Study of the planet is aided by its relatively close proximity to the Earth, compared to other planets, but the surface of Venus is obscured by an atmosphere opaque to visible light.

<span class="mw-page-title-main">Atmosphere of Venus</span> Gas layer surrounding Venus

The atmosphere of Venus is the very dense layer of gases surrounding the planet Venus. Venus's atmosphere is composed of 96.5% carbon dioxide and 3.5% nitrogen, with other chemical compounds present only in trace amounts. It is much denser and hotter than that of Earth; the temperature at the surface is 740 K, and the pressure is 93 bar (1,350 psi), roughly the pressure found 900 m (3,000 ft) under water on Earth. The atmosphere of Venus supports decks of opaque clouds of sulfuric acid that cover the entire planet, preventing optical Earth-based and orbital observation of the surface. Information about surface topography has been obtained exclusively by radar imaging.

<span class="mw-page-title-main">Venera-D</span> Proposed Russian mission to Venus

Venera-D is a proposed Russian space mission to Venus that would include an orbiter and a lander to be launched in 2031. The orbiter's prime objective is to perform observations with the use of a radar. The lander, based on the Venera design, would be capable of operating for a long duration on the planet's surface. The "D" in Venera-D stands for "dolgozhivuschaya," which means "long lasting" in Russian.

<span class="mw-page-title-main">Sara Seager</span> Canadian astronomer

Sara Seager is a Canadian-American astronomer and planetary scientist. She is a professor at the Massachusetts Institute of Technology and is known for her work on extrasolar planets and their atmospheres. She is the author of two textbooks on these topics, and has been recognized for her research by Popular Science, Discover Magazine, Nature, and TIME Magazine. Seager was awarded a MacArthur Fellowship in 2013 citing her theoretical work on detecting chemical signatures on exoplanet atmospheres and developing low-cost space observatories to observe planetary transits.

<span class="mw-page-title-main">Life on Venus</span> Scientific assessments on the microbial habitability of Venus

The possibility of life on Venus is a subject of interest in astrobiology due to Venus' proximity and similarities to Earth. To date, no definitive evidence has been found of past or present life there. In the early 1960s, studies conducted via spacecraft demonstrated that the current Venusian environment is extreme compared to Earth's. Studies continue to question whether life could have existed on the planet's surface before a runaway greenhouse effect took hold, and whether a relict biosphere could persist high in the modern Venusian atmosphere.

<i>DAVINCI</i> Planned Venus atmospheric probe

DAVINCI is a planned mission for an orbiter and atmospheric probe to the planet Venus. Together with the separate VERITAS mission, which will also study Venus, it was selected by NASA on June 2, 2021 to be part of their Discovery Program. Its acronym is inspired by Leonardo da Vinci in honor of his scientific innovations, aerial sketches and constructions.

<span class="mw-page-title-main">SPRITE (spacecraft)</span> Proposed NASA Saturn atmospheric probe mission concept

SPRITE was a proposed Saturn atmospheric probe mission concept of the NASA. SPRITE is a design for an atmospheric entry probe that would travel to Saturn from Earth on its own cruise stage, then enter the atmosphere of Saturn, and descend taking measurements in situ.

Venus Atmospheric Maneuverable Platform (VAMP) is a mission concept by the aerospace companies Northrop Grumman and LGarde for a powered, long endurance, semi-buoyant inflatable aircraft that would explore the upper atmosphere of planet Venus for biosignatures as well as perform atmospheric measurements. The inflatable aircraft has a trapezoidal shape that is sometimes called delta wing or flying wing, and would have dual electric-driven propellers that would be stowed during atmospheric entry.

<span class="mw-page-title-main">Rocket Lab Photon</span> Satellite bus made by Rocket Lab

Photon is a satellite bus based on Rocket Lab's Electron kick stage. It moves satellites into their appropriate orbits once boosted by rockets such as Electron. It is customizable for uses including LEO payload hosting, lunar flybys, and interplanetary missions.

References

  1. 1 2 "Rocket Lab Spacecraft". Rocket Lab. Rocket Lab. Retrieved 27 March 2024.
  2. 1 2 3 4 5 6 Campbell, Lyle; Philipp, Dahm; Mandy, Christophe; Peterson, Keith; Monk, Josh; Alpert, Hannah (17 May 2023). Rocket Lab Venus Probe Thermal Protection System – Design, Development, and Future Applications. International Planetary Probe Workshop. Marseille. Archived from the original (DOC) on 7 February 2024. Retrieved 7 February 2024.
  3. 1 2 "Rocket Lab Probe". Venus Cloud Life - MIT. 7 March 2023. Retrieved 7 December 2024.
  4. 1 2 3 4 5 6 7 8 French, Richard; Mandy, Christophe; Hunter, Richard; Mosleh, Ehson; Sinclair, Doug; Beck, Peter; Seager, Sara; Petkowski, Janusz J.; Carr, Christopher E.; Grinspoon, David H.; Baumgardner, Darrel (16 August 2022). "Rocket Lab Mission to Venus". Aerospace. 9 (8): 7. arXiv: 2208.07724 . Bibcode:2022Aeros...9..445F. doi: 10.3390/aerospace9080445 .
  5. 1 2 3 4 Foust, Jeff (31 October 2023). "Rocket Lab plans launch of Venus mission as soon as late 2024". SpaceNews. Retrieved 7 February 2024.
  6. 1 2 Seager, Sara; Petkowski, Janusz J.; Carr, Christopher E.; Grinspoon, David H.; Ehlmann, Bethany L.; Saikia, Sarag J.; Agrawal, Rachana; Buchanan, Weston P.; Weber, Monika U.; French, Richard; Klupar, Pete; Worden, Simon P.; Baumgardner, Darrel (10 August 2022). "Venus Life Finder Missions Motivation and Summary". Aerospace. 9 (7): 10. arXiv: 2208.05570 . Bibcode:2022Aeros...9..385S. doi: 10.3390/aerospace9070385 . ISSN   2226-4310.
  7. Pozdnyakov, Anton (20 August 2022). "Largest JWST Image, First Private Interplanetary Mission, Space Bubbles VS Climate Change". Universe Today. Retrieved 7 December 2024.
  8. "Rocket Lab Probe". Venus Cloud Life - MIT. Massachusetts Institute of Technology. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
  9. 1 2 3 4 O'Callaghan, Jonathan. "The first private mission to Venus will have just five minutes to hunt for life". MIT Technology Review. Massachusetts Institute of Technology. Archived from the original on 19 January 2024. Retrieved 7 February 2024.
  10. O’Callaghan, Johnathan (8 February 2021). "The Search for Life on Venus Could Start With This Private Company". New York TImes. Retrieved 7 February 2024.
  11. Greaves, Jane S.; et al. (14 September 2020). "Phosphine gas in the cloud decks of Venus". Nature Astronomy . 5 (7): 655–664. arXiv: 2009.06593 . Bibcode:2021NatAs...5..655G. doi: 10.1038/s41550-020-1174-4 .
  12. "Rocket Lab and MIT's Venus Life Finder mission". The Planetary Society . Retrieved 7 February 2024.
  13. Zisk, Rachael (15 November 2023). "Rocket Lab Takes On Venus". Payload. Payload. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
  14. 1 2 3 Baumgardner, Darrel; Fisher, Ted; Newton, Roy; Roden, Chris; Zmarzly, Pat; Seager, Sara; Petkowski, Janusz J.; Carr, Christopher E.; Špaček, Jan; Benner, Steven A.; Tolbert, Margaret A.; Jansen, Kevin; Grinspoon, David H.; Mandy, Christophe (5 September 2022). "Deducing the Composition of Venus Cloud Particles with the Autofluorescence Nephelometer (AFN)". Aerospace. 9 (9): 12. arXiv: 2209.02054 . Bibcode:2022Aeros...9..492B. doi: 10.3390/aerospace9090492 .
Venus Life Finder
Venus Life Finder Illustration.png
Artist's impression of the Venus Life Finder's Photon Explorer over Venus, carrying the atmospheric probe before deployment
Mission typeAtmospheric Probe
Operator Rocket Lab / MIT
Website
Spacecraft properties
Bus Photon Explorer [1]
Manufacturer Rocket Lab
Dry massProbe:17 kg (37 lb) [2]
Payload massProbe:1 kg (2.2 lb) [2]
Start of mission
Launch dateJanuary 2025 [3]
Rocket Electron
Launch site Launch Complex 1, Māhia [4]
Contractor Rocket Lab
Flyby of Moon
Closest approach2025 (planned)