Venus Life Finder

Last updated

Related Research Articles

<span class="mw-page-title-main">Venus</span> Second planet from the Sun

Venus is the second planet from the Sun. It is a terrestrial planet and is the closest in mass and size to its orbital neighbour Earth. Venus is notable for having the densest atmosphere of the terrestrial planets, composed mostly of carbon dioxide with a thick, global sulfuric acid cloud cover. At the surface it has a mean temperature of 737 K and a pressure of 92 times that of Earth's at sea level. These conditions are extreme enough to compress carbon dioxide into a supercritical state close to Venus's surface.

<span class="mw-page-title-main">Mariner 1</span> 1962 NASA unmanned mission to fly by Venus

Mariner 1, built to conduct the first American planetary flyby of Venus, was the first spacecraft of NASA's interplanetary Mariner program. Developed by Jet Propulsion Laboratory, and originally planned to be a purpose-built probe launched summer 1962, Mariner 1's design was changed when the Centaur proved unavailable at that early date. Mariner 1, were then adapted from the lighter Ranger lunar spacecraft. Mariner 1 carried a suite of experiments to determine the temperature of Venus as well to measure magnetic fields and charged particles near the planet and in interplanetary space.

<span class="mw-page-title-main">Venera</span> Soviet program that explored Venus with multiple probes

The Venera program was the name given to a series of space probes developed by the Soviet Union between 1961 and 1984 to gather information about the planet Venus.

<span class="mw-page-title-main">Pioneer Venus project</span> Two spacecraft send to Venus in 1978

The Pioneer Venus project was part of the Pioneer program consisting of two spacecraft, the Pioneer Venus Orbiter and the Pioneer Venus Multiprobe, launched to Venus in 1978. The program was managed by NASA's Ames Research Center.

<span class="mw-page-title-main">Pioneer Venus Multiprobe</span> American robotic spacecraft send to Venus in 1978; last spacecraft in Pioneer program

The Pioneer Venus Multiprobe, also known as Pioneer Venus 2 or Pioneer 13, was a spacecraft launched in 1978 to explore Venus as part of NASA's Pioneer program. This part of the mission included a spacecraft bus which was launched from Earth carrying one large and three smaller probes, which after separating penetrated the Venusian atmosphere at a different location, returning data as they descended into the planet's thick atmosphere. The entry occurred on December 9, 1978.

<i>Venus Express</i> 2005 mission to explore Venus by the European Space Agency

Venus Express (VEX) was the first Venus exploration mission of the European Space Agency (ESA). Launched in November 2005, it arrived at Venus in April 2006 and began continuously sending back science data from its polar orbit around Venus. Equipped with seven scientific instruments, the main objective of the mission was the long term observation of the Venusian atmosphere. The observation over such long periods of time had never been done in previous missions to Venus, and was key to a better understanding of the atmospheric dynamics. ESA concluded the mission in December 2014.

<span class="mw-page-title-main">Venera 7</span> Soviet Venus spacecraft

Venera 7 was a Soviet spacecraft, part of the Venera series of probes to Venus. When it landed on the Venusian surface on 15 December 1970, it became the first spacecraft to soft land on another planet and the first to transmit data from there back to Earth.

<span class="mw-page-title-main">Venera 4</span> 1967 Soviet Venus probe

Venera 4, also designated 4V-1 No.310, was a probe in the Soviet Venera program for the exploration of Venus. The probe comprised a lander, designed to enter the Venusian atmosphere and parachute to the surface, and a carrier/flyby spacecraft, which carried the lander to Venus and served as a communications relay for it.

<span class="mw-page-title-main">Venera 13</span> Soviet space probe that landed on Venus in 1982

Venera 13 was part of the Soviet Venera program meant to explore Venus.

<span class="mw-page-title-main">Venera 14</span> 1982 Soviet space probe which successfully landed on Venus

Venera 14 was a probe in the Soviet Venera program for the exploration of Venus.

<i>Akatsuki</i> (spacecraft) JAXA mission to study Venus via orbiting probe (2010–present)

Akatsuki, also known as the Venus Climate Orbiter (VCO) and Planet-C, is a Japan Aerospace Exploration Agency (JAXA) space probe tasked with studying the atmosphere of Venus. It was launched aboard an H-IIA 202 rocket on 20 May 2010, but failed to enter orbit around Venus on 6 December 2010. After the craft orbited the Sun for five years, engineers successfully placed it into an alternative Venusian elliptic orbit on 7 December 2015 by firing its attitude control thrusters for 20 minutes and made it the first Japanese satellite orbiting Venus.

<span class="mw-page-title-main">Observations and explorations of Venus</span>

Observations of the planet Venus include those in antiquity, telescopic observations, and from visiting spacecraft. Spacecraft have performed various flybys, orbits, and landings on Venus, including balloon probes that floated in the atmosphere of Venus. Study of the planet is aided by its relatively close proximity to the Earth, compared to other planets, but the surface of Venus is obscured by an atmosphere opaque to visible light.

<span class="mw-page-title-main">Atmosphere of Venus</span> Gas layer surrounding Venus

The atmosphere of Venus is primarily of supercritical carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K, and the pressure is 93 bar (1,350 psi), roughly the pressure found 900 m (3,000 ft) under water on Earth. The Venusian atmosphere supports opaque clouds of sulfuric acid, making optical Earth-based and orbital observation of the surface impossible. Information about the topography has been obtained exclusively by radar imaging. Aside from carbon dioxide, the other main component is nitrogen. Other chemical compounds are present only in trace amounts.

<span class="mw-page-title-main">Sara Seager</span> Canadian astronomer

Sara Seager is a Canadian–American astronomer and planetary scientist. She is a professor at the Massachusetts Institute of Technology and is known for her work on extrasolar planets and their atmospheres. She is the author of two textbooks on these topics, and has been recognized for her research by Popular Science, Discover Magazine, Nature, and TIME Magazine. Seager was awarded a MacArthur Fellowship in 2013 citing her theoretical work on detecting chemical signatures on exoplanet atmospheres and developing low-cost space observatories to observe planetary transits.

<span class="mw-page-title-main">Volcanism on Venus</span> Overview of volcanic activity on the planet Venus

The surface of Venus is dominated by volcanic features and has more volcanoes than any other planet in the Solar System. It has a surface that is 90% basalt, and about 65% of the planet consists of a mosaic of volcanic lava plains, indicating that volcanism played a major role in shaping its surface. There are more than 1,000 volcanic structures and possible periodic resurfacing of Venus by floods of lava. The planet may have had a major global resurfacing event about 500 million years ago, from what scientists can tell from the density of impact craters on the surface. Venus has an atmosphere rich in carbon dioxide, with a pressure that is 90 times that of Earth's atmosphere.

<span class="mw-page-title-main">Life on Venus</span> Scientific assessments on the microbial habitability of Venus

The possibility of life on Venus is a subject of interest in astrobiology due to Venus's proximity and similarities to Earth. To date, no definitive evidence has been found of past or present life there. In the early 1960s, studies conducted via spacecraft demonstrated that the current Venusian environment is extreme compared to Earth's. Studies continue to question whether life could have existed on the planet's surface before a runaway greenhouse effect took hold, and whether a relict biosphere could persist high in the modern Venusian atmosphere.

<span class="mw-page-title-main">SPRITE (spacecraft)</span> Proposed NASA Saturn atmospheric probe mission concept

SPRITE was a proposed Saturn atmospheric probe mission concept of the NASA. SPRITE is a design for an atmospheric entry probe that would travel to Saturn from Earth on its own cruise stage, then enter the atmosphere of Saturn, and descend taking measurements in situ.

Venus Atmospheric Maneuverable Platform (VAMP) is a mission concept by the aerospace companies Northrop Grumman and LGarde for a powered, long endurance, semi-buoyant inflatable aircraft that would explore the upper atmosphere of planet Venus for biosignatures as well as perform atmospheric measurements. The inflatable aircraft has a trapezoidal shape that is sometimes called delta wing or flying wing, and would have dual electric-driven propellers that would be stowed during atmospheric entry.

<span class="mw-page-title-main">Rocket Lab Photon</span> Photon is a satellite bus made by Rocket Lab

Photon is a satellite bus based on Rocket Lab's kick stage.

References

  1. 1 2 3 4 5 6 7 8 9 French, Richard; Mandy, Christophe; Hunter, Richard; Mosleh, Ehson; Sinclair, Doug; Beck, Peter; Seager, Sara; Petkowski, Janusz J.; Carr, Christopher E.; Grinspoon, David H.; Baumgardner, Darrel (16 August 2022). "Rocket Lab Mission to Venus". Aerospace. 9 (8): 7. arXiv: 2208.07724 . Bibcode:2022Aeros...9..445F. doi: 10.3390/aerospace9080445 .
  2. 1 2 3 4 5 6 Campbell, Lyle; Philipp, Dahm; Mandy, Christophe; Peterson, Keith; Monk, Josh; Alpert, Hannah (17 May 2023). Rocket Lab Venus Probe Thermal Protection System – Design, Development, and Future Applications. International Planetary Probe Workshop. Marseille. Archived from the original (DOC) on 7 February 2024. Retrieved 7 February 2024.
  3. 1 2 3 4 5 Foust, Jeff (31 October 2023). "Rocket Lab plans launch of Venus mission as soon as late 2024". SpaceNews. Retrieved 7 February 2024.
  4. 1 2 Seager, Sara; Petkowski, Janusz J.; Carr, Christopher E.; Grinspoon, David H.; Ehlmann, Bethany L.; Saikia, Sarag J.; Agrawal, Rachana; Buchanan, Weston P.; Weber, Monika U.; French, Richard; Klupar, Pete; Worden, Simon P.; Baumgardner, Darrel (10 August 2022). "Venus Life Finder Missions Motivation and Summary". Aerospace. 9 (7): 10. arXiv: 2208.05570 . Bibcode:2022Aeros...9..385S. doi: 10.3390/aerospace9070385 . ISSN   2226-4310.
  5. "Rocket Lab Probe". Venus Cloud Life - MIT. Massachusetts Institute of Technology. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
  6. 1 2 3 4 O'Callaghan, Jonathan. "The first private mission to Venus will have just five minutes to hunt for life". MIT Technology Review. Massachusetts Institute of Technology. Archived from the original on 19 January 2024. Retrieved 7 February 2024.
  7. O’Callaghan, Johnathan (8 February 2021). "The Search for Life on Venus Could Start With This Private Company". New York TImes. Retrieved 7 February 2024.
  8. Greaves, Jane S.; et al. (14 September 2020). "Phosphine gas in the cloud decks of Venus". Nature Astronomy . 5 (7): 655–664. arXiv: 2009.06593 . Bibcode:2021NatAs...5..655G. doi: 10.1038/s41550-020-1174-4 .
  9. "Rocket Lab and MIT's Venus Life Finder mission". The Planetary Society . Retrieved 7 February 2024.
  10. Zisk, Rachael (15 November 2023). "Rocket Lab Takes On Venus". Payload. Payload. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
  11. 1 2 3 Baumgardner, Darrel; Fisher, Ted; Newton, Roy; Roden, Chris; Zmarzly, Pat; Seager, Sara; Petkowski, Janusz J.; Carr, Christopher E.; Špaček, Jan; Benner, Steven A.; Tolbert, Margaret A.; Jansen, Kevin; Grinspoon, David H.; Mandy, Christophe (5 September 2022). "Deducing the Composition of Venus Cloud Particles with the Autofluorescence Nephelometer (AFN)". Aerospace. 9 (9): 12. arXiv: 2209.02054 . Bibcode:2022Aeros...9..492B. doi: 10.3390/aerospace9090492 .
Venus Life Finder
Venus Life Finder Illustration.png
Artist's impression of the Venus Life Finder over Venus, before deployment of atmospheric probe
Mission typeAtmospheric Probe
Operator Rocket Lab / MIT
Website
Spacecraft properties
Bus High Energy Photon [1]
Manufacturer Rocket Lab
Dry massProbe:17 kg (37 lb) [2]
Payload massProbe:1 kg (2.2 lb) [2]
Start of mission
Launch date30 December 2024 (planned) [3]
Rocket Electron
Launch site Launch Complex 1, Māhia [1]
Contractor Rocket Lab
Flyby of Moon
Closest approach2025 (planned)