[[Scalloped topography|Scalloped terrain]] led to the discovery of a large amount of [[Water on Mars|underground ice]] enough water to fill [[Lake Superior]] (November 22, 2016)"},"header_align":{"wt":"center"},"caption_align":{"wt":"center"},"image1":{"wt":"PIA21136 - Scalloped Terrain Led to Finding of Buried Ice on Mars.jpg"},"caption1":{"wt":"Martian terrain"},"width1":{"wt":"640"},"height1":{"wt":"398"},"image2":{"wt":"PIA21138 - Location of Large Subsurface Water-Ice Deposit in Utopia Planitia, Mars.png"},"caption2":{"wt":"Map of terrain"},"width2":{"wt":"596"},"height2":{"wt":"286"},"footer_align":{"wt":""},"footer":{"wt":""}},"i":0}}]}" id="mwA10">
Water on Mars exists almost exclusively as water ice, located in the Martian polar ice caps and under the shallow Martian surface even at more temperate latitudes.[119][120] A small amount of water vapor is present in the atmosphere.[121] There are no bodies of liquid water on the Martian surface because the water vapor pressure is less than 1 Pa,[122] the atmospheric pressure at the surface averages 600 pascals (0.087psi)—about 0.6% of Earth's mean sea level pressure—and because the temperature is far too low, (210K (−63°C)) leading to immediate freezing. Despite this, about 3.8billion years ago,[123] there was a denser atmosphere, higher temperature, and vast amounts of liquid water flowed on the surface,[124][125][126][127] including large oceans.[128][129][130][131][132]
It has been estimated that the primordial oceans on Mars would have covered between 36%[133] and 75% of the planet.[134] On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior.[116][117][118] Analysis of Martian sandstones, using data obtained from orbital spectrometry, suggests that the waters that previously existed on the surface of Mars would have had too high a salinity to support most Earth-like life. Tosca et al. found that the Martian water in the locations they studied all had water activity, aw ≤ 0.78 to 0.86—a level fatal to most Terrestrial life.[135]Haloarchaea, however, are able to live in hypersaline solutions, up to the saturation point.[136]
In June 2000, possible evidence for current liquid water flowing at the surface of Mars was discovered in the form of flood-like gullies.[137][138] Additional similar images were published in 2006, taken by the Mars Global Surveyor, that suggested that water occasionally flows on the surface of Mars. The images showed changes in steep crater walls and sediment deposits, providing the strongest evidence yet that water coursed through them as recently as several years ago.
There is disagreement in the scientific community as to whether or not the recent gully streaks were formed by liquid water. Some suggest the flows were merely dry sand flows.[139][140][141] Others suggest it may be liquid brine near the surface,[142][143][144] but the exact source of the water and the mechanism behind its motion are not understood.[145]
In July 2018, scientists reported the discovery of a subglacial lake on Mars, 1.5km (0.93mi) below the southern polar ice cap, and extending sideways about 20km (12mi), the first known stable body of water on the planet.[146][147][148][149] The lake was discovered using the MARSIS radar on board the Mars Express orbiter, and the profiles were collected between May 2012 and December 2015.[150] The lake is centered at 193°E, 81°S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side, where there is a depression.[146] However, subsequent studies disagree on whether any liquid can be present at this depth without anomalous heating from the interior of the planet.[151][152] Instead, some studies propose that other factors may have led to radar signals resembling those containing liquid water, such as clays, or interference between layers of ice and dust.[153][154][155]
In May 2007, the Spirit rover disturbed a patch of ground with its inoperative wheel, uncovering an area 90% rich in silica.[156] The feature is reminiscent of the effect of hot spring water or steam coming into contact with volcanic rocks. Scientists consider this as evidence of a past environment that may have been favorable for microbial life and theorize that one possible origin for the silica may have been produced by the interaction of soil with acid vapors produced by volcanic activity in the presence of water.[157]
Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganicbiosignatures.[158][159][160] For this reason, hydrothermal deposits are regarded as important targets in the exploration for fossil evidence of ancient Martian life.[161][162][163]
Methane (CH4) is chemically unstable in the current oxidizing atmosphere of Mars. It would quickly break down due to ultraviolet radiation from the Sun and chemical reactions with other gases. Therefore, a persistent presence of methane in the atmosphere may imply the existence of a source to continually replenish the gas.
Trace amounts of methane, at the level of several parts per billion (ppb), were first reported in Mars's atmosphere by a team at the NASA Goddard Space Flight Center in 2003.[166][167] Large differences in the abundances were measured between observations taken in 2003 and 2006, which suggested that the methane was locally concentrated and probably seasonal.[168] On June 7, 2018, NASA announced it has detected a seasonal variation of methane levels on Mars.[15][169][53][54][170][171][172][52]
The ExoMars Trace Gas Orbiter (TGO), launched in March 2016, began on April 21, 2018, to map the concentration and sources of methane in the atmosphere,[173][174] as well as its decomposition products such as formaldehyde and methanol. As of May 2019, the Trace Gas Orbiter showed that the concentration of methane is under detectable level (< 0.05 ppbv).[175][176]
Curiosity detected a cyclical seasonal variation in atmospheric methane.
The principal candidates for the origin of Mars's methane include non-biological processes such as water-rock reactions, radiolysis of water, and pyrite formation, all of which produce H2 that could then generate methane and other hydrocarbons via Fischer–Tropsch synthesis with CO and CO2.[177] It has also been shown that methane could be produced by a process involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars.[178] Although geologic sources of methane such as serpentinization are possible, the lack of current volcanism, hydrothermal activity or hotspots[179] are not favorable for geologic methane.
Living microorganisms, such as methanogens, are another possible source, but no evidence for the presence of such organisms has been found on Mars,[180][181][182] until June 2019 as methane was detected by the Curiosity rover.[183] Methanogens do not require oxygen or organic nutrients, are non-photosynthetic, use hydrogen as their energy source and carbon dioxide (CO2) as their carbon source, so they could exist in subsurface environments on Mars.[184] If microscopic Martian life is producing the methane, it probably resides far below the surface, where it is still warm enough for liquid water to exist.[185]
Since the 2003 discovery of methane in the atmosphere, some scientists have been designing models and in vitro experiments testing the growth of methanogenic bacteria on simulated Martian soil, where all four methanogen strains tested produced substantial levels of methane, even in the presence of 1.0wt% perchlorate salt.[186]
A team led by Levin suggested that both phenomena—methane production and degradation—could be accounted for by an ecology of methane-producing and methane-consuming microorganisms.[187][188]
Distribution of methane in the atmosphere of Mars in the Northern Hemisphere during summer
Research at the University of Arkansas presented in June 2015 suggested that some methanogens could survive in Mars's low pressure. Rebecca Mickol found that in her laboratory, four species of methanogens survived low-pressure conditions that were similar to a subsurface liquid aquifer on Mars. The four species that she tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, and Methanococcus maripaludis.[184] In June 2012, scientists reported that measuring the ratio of hydrogen and methane levels on Mars may help determine the likelihood of life on Mars.[180][181] According to the scientists, "low H2/CH4 ratios (less than approximately 40)" would "indicate that life is likely present and active".[180] The observed ratios in the lower Martian atmosphere were "approximately 10 times" higher "suggesting that biological processes may not be responsible for the observed CH4".[180] The scientists suggested measuring the H2 and CH4 flux at the Martian surface for a more accurate assessment. Other scientists have recently reported methods of detecting hydrogen and methane in extraterrestrial atmospheres.[189][190]
Even if rover missions determine that microscopic Martian life is the seasonal source of the methane, the life forms probably reside far below the surface, outside of the rover's reach.[191]
Formaldehyde
In February 2005, it was announced that the Planetary Fourier Spectrometer (PFS) on the European Space Agency's Mars Express Orbiter had detected traces of formaldehyde in the atmosphere of Mars. Vittorio Formisano, the director of the PFS, has speculated that the formaldehyde could be the byproduct of the oxidation of methane and, according to him, would provide evidence that Mars is either extremely geologically active or harboring colonies of microbial life.[192][193] NASA scientists consider the preliminary findings well worth a follow-up but have also rejected the claims of life.[194][195]
The 1970s Viking program placed two identical landers on the surface of Mars tasked to look for biosignatures of microbial life on the surface. The 'Labeled Release' (LR) experiment gave a positive result for metabolism, while the gas chromatograph–mass spectrometer did not detect organic compounds. The LR was a specific experiment designed to test only a narrowly defined critical aspect of the theory concerning the possibility of life on Mars; therefore, the overall results were declared inconclusive.[26] No Mars lander mission has found meaningful traces of biomolecules or biosignatures. The claim of extant microbial life on Mars is based on old data collected by the Viking landers, currently reinterpreted as sufficient evidence of life, mainly by Gilbert Levin,[196][197] Joseph D. Miller,[198] Navarro,[199] Giorgio Bianciardi and Patricia Ann Straat.
Assessments published in December 2010 by Rafael Navarro-Gonzáles[200][201][202][203] indicate that organic compounds "could have been present" in the soil analyzed by both Viking 1 and 2. The study determined that perchlorate—discovered in 2008 by Phoenix lander[204][205]—can destroy organic compounds when heated, and produce chloromethane and dichloromethane as a byproduct, the identical chlorine compounds discovered by both Viking landers when they performed the same tests on Mars. Because perchlorate would have broken down any Martian organics, the question of whether or not Viking found organic compounds is still wide open.[206][207]
The Labeled Release evidence was not generally accepted initially, and, to this day lacks the consensus of the scientific community.[208]
Meteorites
As of 2018, there are 224 known Martian meteorites (some of which were found in several fragments).[209] These are valuable because they are the only physical samples of Mars available to Earth-bound laboratories. Some researchers have argued that microscopic morphological features found in ALH84001 are biomorphs, however this interpretation has been highly controversial and is not supported by the majority of researchers in the field.[210]
Seven criteria have been established for the recognition of past life within terrestrial geologic samples. Those criteria are:[210]
Is the geologic context of the sample compatible with past life?
Is the age of the sample and its stratigraphic location compatible with possible life?
Does the sample contain evidence of cellular morphology and colonies?
Is there any evidence of biominerals showing chemical or mineral disequilibria?
Is there any evidence of stable isotope patterns unique to biology?
Are there any organic biomarkers present?
Are the features indigenous to the sample?
For general acceptance of past life in a geologic sample, essentially most or all of these criteria must be met. All seven criteria have not yet been met for any of the Martian samples.[210]
ALH84001
An electron microscope reveals bacteria-like structures in meteorite fragment ALH84001
In 1996, the Martian meteorite ALH84001, a specimen that is much older than the majority of Martian meteorites that have been recovered so far, received considerable attention when a group of NASA scientists led by David S. McKay reported microscopic features and geochemical anomalies that they considered to be best explained by the rock having hosted Martian bacteria in the distant past. Some of these features resembled terrestrial bacteria, aside from their being much smaller than any known form of life. Much controversy arose over this claim, and ultimately all of the evidence McKay's team cited as evidence of life was found to be explainable by non-biological processes. Although the scientific community has largely rejected the claim ALH 84001 contains evidence of ancient Martian life, the controversy associated with it is now seen as a historically significant moment in the development of exobiology.[211][212]
In 1998, a team from NASA's Johnson Space Center obtained a small sample for analysis. Researchers found preterrestrial aqueous alteration phases and objects[215] of the size and shape consistent with Earthly fossilizednanobacteria. Analysis with gas chromatography and mass spectrometry (GC-MS) studied its high molecular weight polycyclic aromatic hydrocarbons in 2000, and NASA scientists concluded that as much as 75% of the organic compounds in Nakhla "may not be recent terrestrial contamination".[210][216]
This caused additional interest in this meteorite, so in 2006, NASA managed to obtain an additional and larger sample from the London Natural History Museum. On this second sample, a large dendritic carbon content was observed. When the results and evidence were published in 2006, some independent researchers claimed that the carbon deposits are of biologic origin. It was remarked that since carbon is the fourth most abundant element in the Universe, finding it in curious patterns is not indicative or suggestive of biological origin.[217][218]
Shergotty
The Shergotty meteorite, a 4 kilograms (8.8lb) Martian meteorite, fell on Earth on Shergotty, India on August 25, 1865, and was retrieved by witnesses almost immediately.[219] It is composed mostly of pyroxene and thought to have undergone preterrestrial aqueous alteration for several centuries. Certain features in its interior suggest remnants of a biofilm and its associated microbial communities.[210]
Yamato 000593
Yamato 000593 is the second largestmeteorite from Mars found on Earth. Studies suggest the Martian meteorite was formed about 1.3billion years ago from a lava flow on Mars. An impact occurred on Mars about 12million years ago and ejected the meteorite from the Martian surface into space. The meteorite landed on Earth in Antarctica about 50,000 years ago. The mass of the meteorite is 13.7kg (30lb) and it has been found to contain evidence of past water movement.[220][221][222] At a microscopic level, spheres are found in the meteorite that are rich in carbon compared to surrounding areas that lack such spheres. The carbon-rich spheres may have been formed by biotic activity according to NASA scientists.[220][221][222]
Ichnofossil-like structures
Organism–substrate interactions and their products are important biosignatures on Earth as they represent direct evidence of biological behaviour.[223] It was the recovery of fossilized products of life-substrate interactions (ichnofossils) that has revealed biological activities in the early history of life on the Earth, e.g., Proterozoic burrows, Archean microborings and stromatolites.[224][225][226][227][228][229] Two major ichnofossil-like structures have been reported from Mars, i.e. the stick-like structures from Vera Rubin Ridge and the microtunnels from Martian Meteorites.
Observations at Vera Rubin Ridge by the Mars Space Laboratory rover Curiosity show millimetric, elongate structures preserved in sedimentary rocks deposited in fluvio-lacustrine environments within Gale Crater. Morphometric and topologic data are unique to the stick-like structures among Martian geological features and show that ichnofossils are among the closest morphological analogues of these unique features.[230] Nevertheless, available data cannot fully disprove two major abiotic hypotheses, that are sedimentary cracking and evaporitic crystal growth as genetic processes for the structures.
Microtunnels have been described from Martian meteorites. They consist of straight to curved microtunnels that may contain areas of enhanced carbon abundance. The morphology of the curved microtunnels is consistent with biogenic traces on Earth, including microbioerosion traces observed in basaltic glasses.[231][232][229] Further studies are needed to confirm biogenicity.
Artist's concept showing sand-laden jets erupt from geysers on Mars.
Close up of dark dune spots, probably created by cold geyser-like eruptions.
The seasonal frosting and defrosting of the southern ice cap results in the formation of spider-like radial channels carved on 1-meter thick ice by sunlight. Then, sublimed CO2 – and probably water – increase pressure in their interior producing geyser-like eruptions of cold fluids often mixed with dark basaltic sand or mud.[233][234][235][236] This process is rapid, observed happening in the space of a few days, weeks or months, a growth rate rather unusual in geology – especially for Mars.[237]
A team of Hungarian scientists propose that the geysers' most visible features, dark dune spots and spider channels, may be colonies of photosynthetic Martian microorganisms, which over-winter beneath the ice cap, and as the sunlight returns to the pole during early spring, light penetrates the ice, the microorganisms photosynthesize and heat their immediate surroundings. A pocket of liquid water, which would normally evaporate instantly in the thin Martian atmosphere, is trapped around them by the overlying ice. As this ice layer thins, the microorganisms show through grey. When the layer has completely melted, the microorganisms rapidly desiccate and turn black, surrounded by a grey aureole.[238][239][240] The Hungarian scientists believe that even a complex sublimation process is insufficient to explain the formation and evolution of the dark dune spots in space and time.[241][242] Since their discovery, fiction writer Arthur C. Clarke promoted these formations as deserving of study from an astrobiological perspective.[243]
A multinational European team suggests that if liquid water is present in the spiders' channels during their annual defrost cycle, they might provide a niche where certain microscopic life forms could have retreated and adapted while sheltered from solar radiation.[244] A British team also considers the possibility that organic matter, microbes, or even simple plants might co-exist with these inorganic formations, especially if the mechanism includes liquid water and a geothermal energy source.[237] They also remark that the majority of geological structures may be accounted for without invoking any organic "life on Mars" hypothesis.[237] It has been proposed to develop the Mars Geyser Hopper lander to study the geysers up close.[245]
Planetary protection of Mars aims to prevent biological contamination of the planet.[246] A major goal is to preserve the planetary record of natural processes by preventing human-caused microbial introductions, also called forward contamination. There is abundant evidence as to what can happen when organisms from regions on Earth that have been isolated from one another for significant periods of time are introduced into each other's environment. Species that are constrained in one environment can thrive – often out of control – in another environment much to the detriment of the original species that were present. In some ways, this problem could be compounded if life forms from one planet were introduced into the totally alien ecology of another world.[247]
The prime concern of hardware contaminating Mars derives from incomplete spacecraft sterilization of some hardy terrestrial bacteria (extremophiles) despite best efforts.[30][248] Hardware includes landers, crashed probes, end-of-mission disposal of hardware, and the hard landing of entry, descent, and landing systems. This has prompted research on survival rates of radiation-resistant microorganisms including the species Deinococcus radiodurans and genera Brevundimonas, Rhodococcus, and Pseudomonas under simulated Martian conditions.[249] Results from one of these experimental irradiation experiments, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30cm deep in Martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.[249] The diurnal Mars-like cycles in temperature and relative humidity affected the viability of Deinococcus radiodurans cells quite severely.[250] In other simulations, Deinococcus radiodurans also failed to grow under low atmospheric pressure, under 0°C, or in the absence of oxygen.[251]
Survival under simulated Martian conditions
Since the 1950s, researchers have used containers that simulate environmental conditions on Mars to determine the viability of a variety of lifeforms on Mars. Such devices, called "Mars jars" or "Mars simulation chambers", were first described and used in U.S. Air Force research in the 1950s by Hubertus Strughold, and popularized in civilian research by Joshua Lederberg and Carl Sagan.[252]
Although numerous studies point to resistance to some of Mars conditions, they do so separately, and none has considered the full range of Martian surface conditions, including temperature, pressure, atmospheric composition, radiation, humidity, oxidizing regolith including perchlorates,[259] and others, all at the same time and in combination.[260] Laboratory simulations show that whenever multiple lethal factors are combined, the survival rates plummet quickly.[31]
Water salinity and temperature
Astrobiologists funded by NASA are researching the limits of microbial life in solutions with high salt concentrations at low temperature.[261] Any body of liquid water under the polar ice caps or underground is likely to exist under high hydrostatic pressure and have a significant salt concentration. They know that the landing site of Phoenix lander was found to be regolith cemented with water ice and salts, and the soil samples likely contained magnesium sulfate, magnesium perchlorate, sodium perchlorate, potassium perchlorate, sodium chloride and calcium carbonate.[261][262][263] Earth bacteria capable of growth and reproduction in the presence of highly salted solutions, called halophile or "salt-lover", were tested for survival using salts commonly found on Mars and at decreasing temperatures.[261] The species tested include Halomonas, Marinococcus, Nesterenkonia, and Virgibacillus.[261] Laboratory simulations show that whenever multiple Martian environmental factors are combined, the survival rates plummet quickly,[31] however, halophile bacteria were grown in a lab in water solutions containing more than 25% of salts common on Mars, and starting in 2019[needs update], the experiments will incorporate exposure to low temperature, salts, and high pressure.[261]
Mars-1 was the first spacecraft launched to Mars in 1962,[266] but communication was lost while en route to Mars. With Mars-2 and Mars-3 in 1971–1972, information was obtained on the nature of the surface rocks and altitude profiles of the surface density of the soil, its thermal conductivity, and thermal anomalies detected on the surface of Mars. The program found that its northern polar cap has a temperature below −110°C (−166°F) and that the water vapor content in the atmosphere of Mars is five thousand times less than on Earth. No signs of life were found.[267]
Signs of life of the Mars space program AMS from orbit were not found. The descent vehicle Mars-2 crashed on landing, the descent vehicle Mars-3 launched 1.5 minutes after landing in the Ptolemaeus crater, but worked only 14.5 seconds/[268]
Mariner Crater, as seen by Mariner 4 in 1965. Pictures like this suggested that Mars is too dry for any kind of life.
Streamlined Islands seen by Viking orbiter showed that large floods occurred on Mars. The image is located in Lunae Palus quadrangle.
Mariner 4 probe performed the first successful flyby of the planet Mars, returning the first pictures of the Martian surface in 1965. The photographs showed an arid Mars without rivers, oceans, or any signs of life. Further, it revealed that the surface (at least the parts that it photographed) was covered in craters, indicating a lack of plate tectonics and weathering of any kind for the last 4billion years. The probe also found that Mars has no global magnetic field that would protect the planet from potentially life-threatening cosmic rays. The probe was able to calculate the atmospheric pressure on the planet to be about 0.6 kPa (compared to Earth's 101.3 kPa), meaning that liquid water could not exist on the planet's surface.[26] After Mariner 4, the search for life on Mars changed to a search for bacteria-like living organisms rather than for multicellular organisms, as the environment was clearly too harsh for these.[26][269][270]
Liquid water is necessary for known life and metabolism, so if water was present on Mars, the chances of it having supported life may have been determinant. The Viking orbiters found evidence of possible river valleys in many areas, erosion and, in the southern hemisphere, branched streams.[271][272][273]
The primary mission of the Viking probes of the mid-1970s was to carry out experiments designed to detect microorganisms in Martian soil because the favorable conditions for the evolution of multicellular organisms ceased some four billion years ago on Mars.[274] The tests were formulated to look for microbial life similar to that found on Earth. Of the four experiments, only the Labeled Release (LR) experiment returned a positive result,[dubious–discuss] showing increased 14CO2 production on first exposure of soil to water and nutrients. All scientists agree on two points from the Viking missions: that radiolabeled 14CO2 was evolved in the Labeled Release experiment, and that the GCMS detected no organic molecules. There are vastly different interpretations of what those results imply: A 2011 astrobiology textbook notes that the GCMS was the decisive factor due to which "For most of the Viking scientists, the final conclusion was that the Viking missions failed to detect life in the Martian soil."[275]
Norman Horowitz was the head of the Jet Propulsion Laboratory bioscience section for the Mariner and Viking missions from 1965 to 1976. Horowitz considered that the great versatility of the carbon atom makes it the element most likely to provide solutions, even exotic solutions, to the problems of survival of life on other planets.[276] However, he also considered that the conditions found on Mars were incompatible with carbon based life.
One of the designers of the Labeled Release experiment, Gilbert Levin, believes his results are a definitive diagnostic for life on Mars.[26] Levin's interpretation is disputed by many scientists.[277] A 2006 astrobiology textbook noted that "With unsterilized Terrestrial samples, though, the addition of more nutrients after the initial incubation would then produce still more radioactive gas as the dormant bacteria sprang into action to consume the new dose of food. This was not true of the Martian soil; on Mars, the second and third nutrient injections did not produce any further release of labeled gas."[278] Other scientists argue that superoxides in the soil could have produced this effect without life being present.[279] An almost general consensus discarded the Labeled Release data as evidence of life, because the gas chromatograph and mass spectrometer, designed to identify natural organic matter, did not detect organic molecules.[196] More recently, high levels of organic chemicals, particularly chlorobenzene, were detected in powder drilled from one of the rocks, named "Cumberland", analyzed by the Curiosity rover.[280][281] The results of the Viking mission concerning life are considered by the general expert community as inconclusive.[26][279][282]
In 2007, during a Seminar of the Geophysical Laboratory of the Carnegie Institution (Washington, D.C., US), Gilbert Levin's investigation was assessed once more.[196] Levin still maintains that his original data were correct, as the positive and negative control experiments were in order.[283] Moreover, Levin's team, on April 12, 2012, reported a statistical speculation, based on old data—reinterpreted mathematically through cluster analysis—of the Labeled Release experiments, that may suggest evidence of "extant microbial life on Mars".[283][284] Critics counter that the method has not yet been proven effective for differentiating between biological and non-biological processes on Earth so it is premature to draw any conclusions.[285]
A research team from the National Autonomous University of Mexico headed by Rafael Navarro-González concluded that the GCMS equipment (TV-GC-MS) used by the Viking program to search for organic molecules, may not be sensitive enough to detect low levels of organics.[203]Klaus Biemann, the principal investigator of the GCMS experiment on Viking wrote a rebuttal.[286] Because of the simplicity of sample handling, TV–GC–MS is still considered the standard method for organic detection on future Mars missions, so Navarro-González suggests that the design of future organic instruments for Mars should include other methods of detection.[203]
After the discovery of perchlorates on Mars by the Phoenix lander, practically the same team of Navarro-González published a paper arguing that the Viking GCMS results were compromised by the presence of perchlorates.[287] A 2011 astrobiology textbook notes that "while perchlorate is too poor an oxidizer to reproduce the LR results (under the conditions of that experiment perchlorate does not oxidize organics), it does oxidize, and thus destroy, organics at the higher temperatures used in the Viking GCMS experiment."[288] Biemann has written a commentary critical of this Navarro-González paper as well,[289] to which the latter have replied;[290] the exchange was published in December 2011.
The Phoenix mission landed a robotic spacecraft in the polar region of Mars on May 25, 2008, and it operated until November 10, 2008. One of the mission's two primary objectives was to search for a "habitable zone" in the Martian regolith where microbial life could exist, the other main goal being to study the geological history of water on Mars. The lander has a 2.5 meter robotic arm that was capable of digging shallow trenches in the regolith. There was an electrochemistry experiment which analysed the ions in the regolith and the amount and type of antioxidants on Mars. The Viking program data indicate that oxidants on Mars may vary with latitude, noting that Viking 2 saw fewer oxidants than Viking 1 in its more northerly position. Phoenix landed further north still.[291]Phoenix's preliminary data revealed that Mars soil contains perchlorate, and thus may not be as life-friendly as thought earlier.[292][293][205] The pH and salinity level were viewed as benign from the standpoint of biology. The analysers also indicated the presence of bound water and CO2.[294] A recent analysis of Martian meteorite EETA79001 found 0.6 ppm ClO4−, 1.4 ppm ClO3−, and 16 ppm NO3−, most likely of Martian origin. The ClO3− suggests presence of other highly oxidizing oxychlorines such as ClO2− or ClO, produced both by UV oxidation of Cl and X-ray radiolysis of ClO4−. Thus only highly refractory and/or well-protected (sub-surface) organics are likely to survive.[295] In addition, recent analysis of the Phoenix WCL showed that the Ca(ClO4)2 in the Phoenix soil has not interacted with liquid water of any form, perhaps for as long as 600 Myr. If it had, the highly soluble Ca(ClO4)2 in contact with liquid water would have formed only CaSO4. This suggests a severely arid environment, with minimal or no liquid water interaction.[296]
On December 16, 2014, NASA reported the Curiosity rover detected a "tenfold spike", likely localized, in the amount of methane in the Martian atmosphere. Sample measurements taken "a dozen times over 20 months" showed increases in late 2013 and early 2014, averaging "7 parts of methane per billion in the atmosphere". Before and after that, readings averaged around one-tenth that level.[280][281] In addition, low levels of chlorobenzene (C 6H 5Cl), were detected in powder drilled from one of the rocks, named "Cumberland", analyzed by the Curiosity rover.[280][281]
The NASA Mars 2020 mission includes the Perseverance rover. Launched on July 30, 2020 it is intended to investigate an astrobiologically relevant ancient environment on Mars. This includes its surface geological processes and history, and an assessment of its past habitability and the potential for preservation of biosignatures within accessible geological materials.[307]Perseverance has been on Mars for 4years, 50days.
The Cheyava Falls rock discovered on Mars in June 2024 has been designated by NASA as a "potential biosignature" and was core sampled by the Perseverance rover for possible return to Earth and further examination. Although highly intriguing, no definitive final determination on a biological or abiotic origin of this rock can be made with the data currently available.
Future astrobiology missions
ExoMars is a European-led multi-spacecraft programme currently under development by the European Space Agency (ESA) and the Roscosmos for launch in 2016 and 2020.[308] Its primary scientific mission will be to search for possible biosignatures on Mars, past or present. A rover with a 2m (6.6ft) core drill will be used to sample various depths beneath the surface where liquid water may be found and where microorganisms or organic biosignatures might survive cosmic radiation.[47] The program was suspended in 2022, and is unlikely to launch before 2028.[309]
Mars sample-return mission – The best life detection experiment proposed is the examination on Earth of a soil sample from Mars. However, the difficulty of providing and maintaining life support over the months of transit from Mars to Earth remains to be solved. Providing for still unknown environmental and nutritional requirements is daunting, so it was concluded that "investigating carbon-based organic compounds would be one of the more fruitful approaches for seeking potential signs of life in returned samples as opposed to culture-based approaches."[310]
Some of the main reasons for colonizing Mars include economic interests, long-term scientific research best carried out by humans as opposed to robotic probes, and sheer curiosity. Surface conditions and the presence of water on Mars make it arguably the most hospitable of the planets in the Solar System, other than Earth. Human colonization of Mars would require in situ resource utilization (ISRU); A NASA report states that "applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing, and autonomy. These technologies combined with the vast natural resources should enable, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars."[311][312][313]
↑ Mumma, Michael J. (January 8, 2012). The Search for Life on Mars. Origin of Life Gordon Research Conference. Galveston, TX. Archived from the original on June 4, 2016.
↑ Wallace, Alfred Russel (1907). Is Mars habitable?: A critical examination of Professor Percival Lowell's book 'Mars and its canals,' with an alternative explanation. London: Macmillan. OCLC263175453.[pageneeded]
↑ Dollfus, A. (2010) "The first Pic du Midi photographs of Mars, 1909"
1 2 3 Conrad, P. G.; Archer, D.; Coll, P.; De La Torre, M.; Edgett, K.; Eigenbrode, J. L.; Fisk, M.; Freissenet, C.; Franz, H.; etal. (2013). "Habitability Assessment at Gale Crater: Implications from Initial Results". 44th Lunar and Planetary Science Conference. 1719 (1719): 2185. Bibcode:2013LPI....44.2185C.
↑ Schuerger, Andrew C.; Golden, D. C.; Ming, Doug W. (2012). "Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions". Planetary and Space Science. 72 (1): 91–101. Bibcode:2012P&SS...72...91S. doi:10.1016/j.pss.2012.07.026.
1 2 3 4 MEPAG Special Regions-Science Analysis Group; Beaty, D.; Buxbaum, K.; Meyer, M.; Barlow, N.; Boynton, W.; Clark, B.; Deming, J.; Doran, P. T.; etal. (2006). "Findings of the Mars Special Regions Science Analysis Group". Astrobiology. 6 (5): 677–732. Bibcode:2006AsBio...6..677M. doi:10.1089/ast.2006.6.677. PMID17067257.
1 2 3 4 5 Q. Choi, Charles (May 17, 2010). "Mars Contamination Dust-Up". Astrobiology Magazine. Archived from the original on August 20, 2011. Whenever multiple biocidal factors are combined, the survival rates plummet quickly,
↑ Fairén, A. G.; etal. (2011). "Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars". Nature Geoscience. 4 (10): 667–670. Bibcode:2011NatGe...4..667F. doi:10.1038/ngeo1243.
↑ Dehant, V.; Lammer, H.; Kulikov, Y. N.; Grießmeier, J. -M.; Breuer, D.; Verhoeven, O.; Karatekin, Ö.; Hoolst, T.; etal. (2007). "Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars". Geology and Habitability of Terrestrial Planets. Space Sciences Series of ISSI. Vol.24. pp.279–300. doi:10.1007/978-0-387-74288-5_10. ISBN978-0-387-74287-8.
1 2 "NASA Astrobiology Strategy"(PDF). NASA. 2015. Archived from the original(PDF) on December 22, 2016. Retrieved November 12, 2017. Subsurface: Conceivably, if life exists (or existed) on Mars, an icy moon, or some other planetary body, evidence of that life could be found, or is best preserved, in the subsurface, away from present-day harsh surface processes.
↑ Carr, Michael H. The Surface of Mars. Cambridge Planetary Science Series (No. 6). ISBN978-0-511-26688-1.
↑ Luhmann, J. G.; Russell, C. T. (1997). "Mars: Magnetic Field and Magnetosphere". In Shirley, J. H.; Fainbridge, R. W. (eds.). Encyclopedia of Planetary Sciences. New York: Chapman and Hall. pp.454–6. Archived from the original on March 5, 2018. Retrieved March 5, 2018.
1 2 Than, Ker (January 29, 2007). "Study: Surface of Mars Devoid of Life". Space.com. Archived from the original on April 29, 2014. After mapping cosmic radiation levels at various depths on Mars, researchers have concluded that any life within the first several yards of the planet's surface would be killed by lethal doses of cosmic radiation.
1 2 Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). "Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology". Geophysical Research Letters. 34 (2): L02207. Bibcode:2007GeoRL..34.2207D. doi:10.1029/2006GL027494. S2CID59046908. Bacteria or spores held dormant by freezing conditions cannot metabolise and become inactivated by accumulating radiation damage. We find that at 2m depth, the reach of the ExoMars drill, a population of radioresistant cells would need to have reanimated within the last 450,000 years to still be viable. Recovery of viable cells cryopreserved within the putative Cerberus pack-ice requires a drill depth of at least 7.5 m.
↑ Lovet, Richard A. (February 2, 2007). "Mars Life May Be Too Deep to Find, Experts Conclude". National Geographic News. Archived from the original on February 21, 2014. That's because any bacteria that may once have lived on the surface have long since been exterminated by cosmic radiation sleeting through the thin Martian atmosphere.
↑ Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). "Spectral evidence for hydrated salts in recurring slope lineae on Mars". Nature Geoscience. 8 (11): 829–832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546.
↑ McKay, Christopher P.; Stoker, Carol R.; Glass, Brian J.; Davé, Arwen I.; Davila, Alfonso F.; Heldmann, Jennifer L.; Marinova, Margarita M.; Fairen, Alberto G.; Quinn, Richard C.; etal. (April 5, 2013). "The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life". Astrobiology. 13 (4): 334–353. Bibcode:2013AsBio..13..334M. doi:10.1089/ast.2012.0878. PMID23560417.
1 2 Nitrogen on Mars: Insights from Curiosity (PDF). J. C. Stern, B. Sutter, W. A. Jackson, Rafael Navarro-González, Christopher P. McKay, Douglas W. Ming, P. Douglas Archer, D. P. Glavin1, A. G. Fairen, and Paul R. Mahaffy. Lunar and Planetary Science XLVIII (2017).
↑ Adcock, C. T.; Hausrath, E. M.; Forster, P. M. (2013). "Readily available phosphate from minerals in early aqueous environments on Mars". Nature Geoscience. 6 (10): 824–827. Bibcode:2013NatGe...6..824A. doi:10.1038/ngeo1923.
↑ Heldmann, Jennifer L.; Toon, Owen B.; Pollard, Wayne H.; Mellon, Michael T.; Pitlick, John; McKay, Christopher P.; Andersen, Dale T. (2005). "Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions". Journal of Geophysical Research. 110 (E5): E05004. Bibcode:2005JGRE..110.5004H. doi:10.1029/2004JE002261. hdl:2060/20050169988. S2CID1578727.
↑ Hecht, Michael H.; Vasavada, Ashwin R. (2006). "Transient liquid water near an artificial heat source on Mars". International Journal of Mars Science and Exploration. 2: 83–96. Bibcode:2006IJMSE...2...83H. doi:10.1555/mars.2006.0006.
↑ Arfstrom, J. D. (2012). "A Conceptual Model of Equatorial Ice Sheets on Mars". Comparative Climatology of Terrestrial Planets. 1675: 8001. Bibcode:2012LPICo1675.8001A.
↑ Baker, V. R.; Strom, R. G.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Kale, V. S. (1991). "Ancient oceans, ice sheets and the hydrological cycle on Mars". Nature. 352 (6336): 589–594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0. S2CID4321529.
↑ Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–63. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891.
↑ Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. (2010). "Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water". Icarus. 205 (1): 113–137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009.
↑ "Press Release". University of Arizona. March 16, 2006. Archived from the original on July 21, 2006.
↑ Leveille, R. J. (2010). "Mineralized iron oxidizing bacteria from hydrothermal vents: Targeting biosignatures on Mars". AGU Fall Meeting Abstracts. 12: P12A–07. Bibcode:2010AGUFM.P12A..07L.
↑ Walter, M. R.; Des Marais, David J. (1993). "Preservation of Biological Information in Thermal Spring Deposits: Developing a Strategy for the Search for Fossil Life on Mars". Icarus. 101 (1): 129–43. Bibcode:1993Icar..101..129W. doi:10.1006/icar.1993.1011. PMID11536937.
↑ Allen, Carlton C.; Albert, Fred G.; Chafetz, Henry S.; Combie, Joan; Graham, Catherine R.; Kieft, Thomas L.; Kivett, Steven J.; McKay, David S.; etal. (2000). "Microscopic Physical Biomarkers in Carbonate Hot Springs: Implications in the Search for Life on Mars". Icarus. 147 (1): 49–67. Bibcode:2000Icar..147...49A. doi:10.1006/icar.2000.6435. PMID11543582.
↑ Agresti, D. G.; Wdowiak, T. J.; Wade, M. L.; Armendarez, L. P.; Farmer, J. D. (1995). "A Mossbauer Investigation of Hot Springs Iron Deposits". Abstracts of the Lunar and Planetary Science Conference. 26: 7. Bibcode:1995LPI....26....7A.
↑ Agresti, D. G.; Wdowiak, T. J.; Wade, M. L.; Armendarez, L. P. (1997). "Mössbauer Spectroscopy of Thermal Springs Iron Deposits as Martian Analogs". Early Mars: Geologic and Hydrologic Evolution. 916: 1. Bibcode:1997LPICo.916....1A.
↑ Mumma, M. J.; Novak, R. E.; DiSanti, M. A.; Bonev, B. P. (2003). "A Sensitive Search for Methane on Mars". Bulletin of the American Astronomical Society. 35: 937. Bibcode:2003DPS....35.1418M.
↑ Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; etal. (2017). ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit. 49th Annual Division for Planetary Sciences Meeting. October 15–20, 2017. Provo, Utah. Bibcode:2017DPS....4941801S. 418.01.
↑ Krasnopolsky, Vladimir A.; Maillard, Jean Pierre; Owen, Tobias C. (December 2004). "Detection of methane in the martian atmosphere: evidence for life?". Icarus. 172 (2): 537–547. Bibcode:2004Icar..172..537K. doi:10.1016/j.icarus.2004.07.004.
↑ Steigerwald, Bill (January 15, 2009). "Martian Methane Reveals the Red Planet is not a Dead Planet". NASA's Goddard Space Flight Center. NASA. Archived from the original on January 16, 2009. If microscopic Martian life is producing the methane, it probably resides far below the surface, where it's still warm enough for liquid water to exist
↑ Kral, T. A.; Goodhart, T.; Howe, K. L.; Gavin, P. (2009). "Can Methanogens Grow in a Perchlorate Environment on Mars?". 72nd Annual Meeting of the Meteoritical Society. 72: 5136. Bibcode:2009M&PSA..72.5136K.
↑ Howe, K. L.; Gavin, P.; Goodhart, T.; Kral, T. A. (2009). "Methane Production by Methanogens in Perchlorate-supplemented Media". 40th Lunar and Planetary Science Conference. 40: 1287. Bibcode:2009LPI....40.1287H.
↑ Levin, Gilbert V.; Straat, Patricia Ann (2009). "Methane and life on Mars". In Hoover, Richard B; Levin, Gilbert V; Rozanov, Alexei Y; Retherford, Kurt D (eds.). Instruments and Methods for Astrobiology and Planetary Missions XII. Vol.7441. pp.12–27. Bibcode:2009SPIE.7441E..0DL. doi:10.1117/12.829183. ISBN978-0-8194-7731-6. S2CID73595154.
↑ Crocco, Mario; Contreras, N- C. (2008). Folia Neurobiológica Argentina Vol. XI, "Un palindrome: las criaturas vivas conscientes como instrumentos de la naturaleza; la naturaleza como instrumento de las criaturas vivas conscientes". Ediciones Análisis, Buenos Aires–Rosario–Bahía Blanca. p.70. ISBN978-987-29362-0-4.
↑ Navarro-González, Rafael; Vargas, Edgar; de la Rosa, José; Raga, Alejandro C.; McKay, Christopher P. (2010). "Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars". Journal of Geophysical Research. Vol.115. Bibcode:2010JGRE..11512010N. doi:10.1029/2010JE003599.
1 2 3 4 5 Gibson, E. K. Jr.; Westall, F.; McKay, D. S.; Thomas-Keprta, K.; Wentworth, S.; Romanek, C. S. (1999). "Evidence for ancient Martian life"(PDF). The Fifth International Conference on Mars, July 19–24, 1999, Pasadena, California, a Lunar and Planetary Science Conference (Abstract). NASA. p.6142. Bibcode:1999ficm.conf.6142G. Archived(PDF) from the original on March 19, 2015.
↑ McKay, David S.; Gibson, Everett K.; Thomas-Keprta, Kathie L.; Vali, Hojatollah; Romanek, Christopher S.; Clemett, Simon J.; Chillier, Xavier D. F.; Maechling, Claude R.; Zare, Richard N. (1996). "Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001". Science. 273 (5277): 924–30. Bibcode:1996Sci...273..924M. doi:10.1126/science.273.5277.924. PMID8688069. S2CID40690489.
↑ Baalke, Ron (1995). "The Nakhla Meteorite". Jet Propulsion Lab. NASA. Archived from the original on September 14, 2008. Retrieved August 17, 2008.
↑ Compilation of scientific research references on the Nakhla meteorite: "Nakhla References". Archived from the original on September 4, 2008. Retrieved August 21, 2008.
↑ Kieffer, H. H. (2000). "Annual Punctuated CO2 Slab-Ice and Jets on Mars". International Conference on Mars Polar Science and Exploration (1057): 93. Bibcode:2000mpse.conf...93K.
↑ Portyankina, G.; Markiewicz, W. J.; Garcia-Comas, M.; Keller, H. U.; Bibring, J.-P.; Neukum, G. (2006). "Simulations of Geyser-type Eruptions in Cryptic Region of Martian South Polar Cap". Fourth International Conference on Mars Polar Science and Exploration. 1323: 8040. Bibcode:2006LPICo1323.8040P.
↑ Horváth, A.; Gánti, T.; Gesztesi, A.; Bérczi, Sz.; Szathmáry, E. (2001). "Probable Evidences of Recent Biological Activity on Mars: Appearance and Growing of Dark Dune Spots in the South Polar Region". 32nd Annual Lunar and Planetary Science Conference. 32: 1543. Bibcode:2001LPI....32.1543H.
↑ Pócs, T.; Horváth, A.; Gánti, T.; Bérczi, Sz.; Szathemáry, E. (2004). "Possible crypto-biotic-crust on Mars?". Proceedings of the Third European Workshop on Exo-Astrobiology. 545: 265–6. Bibcode:2004ESASP.545..265P.
↑ Horváth, A.; Gánti, T.; Bérczi, Sz.; Gesztesi, A.; Szathmáry, E. (2002). "Morphological Analysis of the Dark Dune Spots on Mars: New Aspects in Biological Interpretation". 33rd Annual Lunar and Planetary Science Conference. 33: 1108. Bibcode:2002LPI....33.1108H.
↑ Orme, Greg M.; Ness, Peter K. (June 9, 2003). "Martian Spiders"(PDF). Marsbugs. 10 (23): 5–7. Archived from the original(PDF) on September 27, 2007.
↑ Manrubia, S. C.; Prieto Ballesteros, O.; González Kessler, C.; Fernández Remolar, D.; Córdoba-Jabonero, C.; Selsis, F.; Bérczi, S.; Gánti, T.; Horváth, A. (2004). Comparative analysis of geological features and seasonal processes in 'Inca City' and 'Pityusa Patera' regions on Mars. Proceedings of the Third European Workshop on Exo-Astrobiology. Vol.545. pp.77–80. Bibcode:2004ESASP.545...77M. ISBN978-92-9092-856-0.
↑ Landis, Geoffrey; Oleson, Steven; McGuire, Melissa (2012). "Design Study for a Mars Geyser Hopper". 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. doi:10.2514/6.2012-631. hdl:2060/20120004036. ISBN978-1-60086-936-5.
↑ Committee on an Astrobiology Strategy for the Exploration of Mars; National Research Council (2007). "Planetary Protection for Mars Missions". An Astrobiology Strategy for the Exploration of Mars. The National Academies Press. pp.95–98. ISBN978-0-309-10851-5.
1 2 Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M. (2010). "Low-Temperature Ionizing Radiation Resistance of Deinococcus radiodurans and Antarctic Dry Valley Bacteria". Astrobiology. 10 (7): 717–32. Bibcode:2010AsBio..10..717D. doi:10.1089/ast.2009.0439. PMID20950171.
↑ de la Vega, U. Pogoda; Rettberg, P.; Reitz, G. (2007). "Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans". Advances in Space Research. 40 (11): 1672–7. Bibcode:2007AdSpR..40.1672D. doi:10.1016/j.asr.2007.05.022.
↑ de Vera, Jean-Pierre; Möhlmann, Diedrich; Butina, Frederike; Lorek, Andreas; Wernecke, Roland; Ott, Sieglinde (2010). "Survival Potential and Photosynthetic Activity of Lichens Under Mars-Like Conditions: A Laboratory Study". Astrobiology. 10 (2): 215–27. Bibcode:2010AsBio..10..215D. doi:10.1089/ast.2009.0362. PMID20402583.
↑ de Vera, J.-P. P.; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Möhlmann, D.; Spohn, T. (2012). "The adaptation potential of extremophiles to Martian surface conditions and its implication for the habitability of Mars". EGU General Assembly 2012. 14: 2113. Bibcode:2012EGUGA..14.2113D.
↑ de la Torre Noetzel, R.; Sanchez Inigo, F.J.; Rabbow, E.; Horneck, G.; de Vera, J. P.; Sancho, L.G. (June 2007). "Lichens Survive in Space: Results from the 2005 LICHENS Experiment". Astrobiology. 7 (3): 443–454. Bibcode:2007AsBio...7..443S. doi:10.1089/ast.2006.0046. PMID17630840.
↑ Sánchez, F. J.; Mateo-Martí, E.; Raggio, J.; Meeßen, J.; Martínez-Frías, J.; Sancho, L. G.; Ott, S.; de la Torre, R. (2012). "The resistance of the lichen Circinaria gyrosa (nom. Provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile". Planetary and Space Science. 72 (1): 102–10. Bibcode:2012P&SS...72..102S. doi:10.1016/j.pss.2012.08.005.
↑ Rzymski, Piotr; Losiak, Anna; Heinz, Jacob; Szukalska, Marta; Florek, Ewa; Poniedziałek, Barbara; Kaczmarek, Łukasz; Schulze-Makuch, Dirk (October 2024). "Perchlorates on Mars: Occurrence and implications for putative life on the Red Planet". Icarus. 421: 116246. Bibcode:2024Icar..42116246R. doi:10.1016/j.icarus.2024.116246.
↑ Mihos, Chris (January 11, 2006). "Mars (1960–1974): Mars 1". Department of Astronomy, Case Western Reserve University. Archived from the original on October 13, 2013. Retrieved January 26, 2014.
↑ Webster, Guy; Hoover, Rachel; Marlaire, Ruth; Frias, Gabriela (September 3, 2010). "Missing Piece Inspires New Look at Mars Puzzle". Jet Propulsion Laboratory, NASA. Archived from the original on November 3, 2010. Retrieved October 24, 2010.
↑ Kounaves, S. P.; etal. (2014). "Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics". Icarus. 2014 (229): 206–213. Bibcode:2014Icar..229..206K. doi:10.1016/j.icarus.2013.11.012.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.