Arabia quadrangle

Last updated

Arabia quadrangle
USGS-Mars-MC-12-ArabiaRegion-mola.png
Map of Arabia quadrangle from Mars Orbiter Laser Altimeter (MOLA) data. The highest elevations are red and the lowest are blue.
Coordinates 15°00′N337°30′W / 15°N 337.5°W / 15; -337.5
Image of the Arabia Quadrangle (MC-12). The region is dominated with heavily cratered highlands; the northeast part contains Cassini Crater. PIA00172-MC-12-ArabiaRegion-19980605.jpg
Image of the Arabia Quadrangle (MC-12). The region is dominated with heavily cratered highlands; the northeast part contains Cassini Crater.

The Arabia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Arabia quadrangle is also referred to as MC-12 (Mars Chart-12). [1]

Contents

The quadrangle contains part of the classic area of Mars known as Arabia. It also contains a part of Terra Sabaea and a small part of Meridiani Planum. It lies on the boundary between the young northern plains and the old southern highlands. The quadrangle covers the area from 315° to 360° west longitude and 0° to 30° north latitude.

Description

The surface of the Arabia quadrangle appears to be very old because it has a high density of craters, but it is not near as high in elevation as typical old surfaces. On Mars the oldest areas contain the most craters; the oldest period is called Noachian after the quadrangle Noachis. [2] The Arabia area contains many buttes and ridges. Some believe that during certain climate changes an ice-dust layer was deposited; later, parts were eroded to form buttes. [3] Some outflow channels are found in Arabia, namely Naktong Vallis, Locras Valles, Indus Vallis, Scamander Vallis, and Cusus Valles. [4]

Layers

Many places in Arabia are shaped into layers. [5] The layers can be a few meters thick or tens of meters thick. Recent research on these layers by scientists at California Institute of Technology (Caltech) suggest that ancient climate change on Mars caused by regular variation in the planet's tilt, or obliquity may have caused the patterns in the layers. On Earth, similar changes (astronomical forcing) of climate results in ice-age cycles.

A recent study of layers in craters in western Arabia revealed much about the history of the layers. Although the craters in this study are just outside the boundary for the Arabia quadrangle the findings would probably apply to the Arabia quadrangle as well. The thickness of each layer may average less than 4 meters in one crater, but 20 meters in another. The pattern of layers measured in Becquerel crater, suggests that each layer was formed over a period of about 100,000 years. Moreover, every 10 layers were bundled together into larger units. The 10-layer pattern is repeated at least 10 times. So every 10-layer pattern took one-million years to form.

The tilt of the Earth's axis changes by only a little more than 2 degrees; it is stabilized by the relatively large mass of the Moon. In contrast Mars's tilt varies by tens of degrees. When the tilt (or obliquity) is low, the poles are the coldest places on the planet, while the equator is the warmest—as on Earth. This causes gases in the atmosphere, like water and carbon dioxide, to migrate pole ward, where they freeze. When the obliquity is higher, the poles receive more sunlight, causing those materials to migrate away. When carbon dioxide moves from the poles, the atmospheric pressure increases, maybe causing a difference in the ability of winds to transport and deposit sand. Also, with more water in the atmosphere sand grains may stick and cement together to form layers. This study of the thickness of layers was done using stereo topographic maps obtained by processing data from the high-resolution camera onboard NASA's Mars Reconnaissance Orbiter . [6]

Recent research leads scientists to believe that some of the craters in Arabia may have held huge lakes. Cassini Crater and Tikonravov Crater probably once were full of water since their rims seem to have been breached by water. Both inflow and outflow channels have been observed on their rims. Each of these lakes would have contained more water than Earth's Lake Baikal, our largest freshwater lake by volume. The watersheds for lakes in Arabia seem to be too small to gather enough water by precipitation alone; therefore it is thought that much of their water came from groundwater. [7]

Another group of researchers proposed groundwater with dissolved minerals came to the surface, in and later around craters, and helped to form layers by adding minerals (especially sulfate) and cementing sediments. Upon close examination, Arabia layers appear to have a slight tilt. This tilt supports formation with the action of a rising water table. A water table generally follows the topography. Since the layers slope slightly down toward the northwest, the layers may have been created by groundwater, rather than a single large sea that has been suggested.

This hypothesis is supported by a groundwater model and by sulfates discovered in a wide area. [8] [9] At first, by examining surface materials with the Opportunity rover, scientists discovered that groundwater had repeatedly risen and deposited sulfates. [10] [11] [12] [13] [14] Later studies with instruments on board the Mars Reconnaissance Orbiter showed that the same kinds of materials exist in a large area that included Arabia. [15]

Wide view of layers ESP 27747 1820.jpg

                    Layers and faults in Arabia quadrangle--HiRISE Picture of the Day  (September 25, 2021)


Light-toned materials

Certain areas of Mars show ground that has a much lighter-tone than most other areas. Much of the surface of Mars is dark because of extensive flows of the dark lave rock basalt. Studies with spectroscopes from orbit have shown that many light-toned areas contain hydrated minerals, and/or clay minerals. [16] [17] [18] [19] That means that water was once there in order to produce these substances. In short, light-toned materials are markers for the past presence of water.

Craters

Impact craters generally have a rim with ejecta around them, in contrast volcanic craters usually do not have a rim or ejecta deposits. As craters get larger (greater than 10 km in diameter) they usually have a central peak. [20] The peak is caused by a rebound of the crater floor following the impact. [21] Sometimes craters display layers. Since the collision that produces a crater is like a powerful explosion, rocks from deep underground are tossed unto the surface. Hence, craters can show us what lies deep under the surface.

Some craters in Arabia are classified as pedestal craters. A pedestal crater is a crater with its ejecta sitting above the surrounding terrain and thereby forming a raised platform. They form when an impact crater ejects material which forms an erosion resistant layer, thus protecting the immediate area from erosion. As a result of this hard covering, the crater and its ejecta become elevated, as erosion removes the softer material beyond the ejecta. [22] Some pedestals have been accurately measured to be hundreds of meters above the surrounding area. This means that hundreds of meters of material were eroded away. Pedestal craters were first observed during the Mariner missions. [22] [23] [24]

Researchers believe over 200 new craters are formed each year on Mars, based on study of years of HiRISE images. [25] [26]

Possible methane

One study with the Planetary Fourier Spectrometer in the Mars Express spacecraft found possible methane in three areas of Mars, one of which was in Arabia. One possible source of methane is from the metabolism of living bacteria. [28] However, a recent study indicates that to match the observations of methane, there must be something that quickly destroys the gas, otherwise it would be spread all through the atmosphere instead of being concentrated in just a few locations. There may be something in the soil that oxidizes the gas before it has a chance to spread. If this is so, that same chemical would destroy organic compounds, thus life would be very difficult on Mars. [29] [30]

Deformation bands

The Mars Reconnaissance Orbiter showed deformation bands in Capen Crater, located in the Arabia quadrangle. Deformation bands are small faults with very small displacements. [31] They often proceed large faults. They develop in porous rocks, like sandstone. They can restrict and/or change the flow of fluids like water and oil. They are common in the Colorado Plateau. [32] Good examples form in the Entrada Sandstone in the San Rafael Swell in Utah. [33] The bands represent failure by localized frictional sliding. [34] [35] The bands on Mars are a few meters wide and up to a few kilometers long. They are caused by the compression or stretching of underground layers. Erosion of overlying layers make them visible at the surface. Capen Crater was unnamed before the discovery of deformation bands. It was named for Charles Capen, who studied Mars at JPL's Table Mountain Observatory in California and at Lowell Observatory in Arizona. [36]

Geological history

Recent studies, reported in the journal Icarus, have suggested that the area underwent several phases in its formation:

Dark slope streaks

Streaks are common on Mars. They occur on steep slopes of craters, troughs, and valleys. The streaks are dark at first. They get lighter with age. [40] Sometimes they start in a tiny spot, then spread out and go for hundreds of meters. They have been seen to travel around obstacles, like boulders. [41] It is believed that they are avalanches of bright dust that expose a darker underlying layer. However, several ideas have been advanced to explain them. Some involve water or even the growth of organisms. [42] [43] [44] Streaks appear in areas covered with dust. Much of the Martian surface is covered with dust. Fine dust settles out of the atmosphere covering everything. We know a lot about this dust because the solar panels of the Mars Rovers get covered with dust, thus reducing the electrical energy. The power of the Rovers has been restored many times by the wind, in the form of dust devils, cleaning the panels and boosting the power. So, we know that dust settles from the atmosphere then returns over and over. [45] Dust storms are frequent, especially when the spring season begins in the southern hemisphere. At that time, Mars is 40% closer to the Sun. The orbit of Mars is much more elliptical then the Earth's. That is the difference between the farthest point from the Sun and the closest point to the Sun is very great for Mars, but only a slight amount for the Earth. Also, every few years, the entire planet is engulfed in global dust storms. When NASA's Mariner 9 craft arrived there, nothing could be seen through the dust storm. [21] [46] Other global dust storms have also been observed, since that time.

Research, published in January 2012 in Icarus, found that dark streaks were initiated by airblasts from meteorites traveling at supersonic speeds. The team of scientists was led by Kaylan Burleigh, an undergraduate at the University of Arizona. After counting some 65,000 dark streaks around the impact site of a group of five new craters, patterns emerged. The number of streaks was greatest closer to the impact site. So, the impact somehow probably caused the streaks. Also, the distribution of the streaks formed a pattern with two wings extending from the impact site. The curved wings resembled scimitars, curved knives. This pattern suggests that an interaction of airblasts from the group of meteorites shook dust loose enough to start dust avalanches that formed the many dark streaks. At first it was thought that the shaking of the ground from the impact caused the dust avalanches, but if that was the case the dark streaks would have been arranged symmetrically around the impacts, rather than being concentrated into curved shapes. [47] [48]

Dark slope streaks can be caused by nearby impacts, as seen in the following HiRISE image of a new small impact that set off a slope streak.

Linear ridge networks

Linear ridge networks are found in various places on Mars in and around craters. [49] Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind. Since the ridges occur in locations with clay, these formations could serve as a marker for clay which requires water for its formation. [50] [51] [52] Water here could have supported past life in these locations. Clay may also preserve fossils or other traces of past life.

Other landscape features

Other Mars quadrangles

Interactive icon.svg Clickable image of the 30 cartographic quadrangles of Mars, defined by the USGS. [53] [56] Quadrangle numbers (beginning with MC for "Mars Chart") [57] and names link to the corresponding articles. North is at the top; 0°N180°W / 0°N 180°W / 0; -180 is at the far left on the equator. The map images were taken by the Mars Global Surveyor.
()

Interactive Mars map

Interactive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to -8 km). Axes are latitude and longitude; Polar regions are noted.
(See also: Mars Rovers map and Mars Memorial map) (view * discuss) Mars Map.JPGCydonia MensaeGale craterHolden craterJezero craterLomonosov craterLyot craterMalea PlanumMaraldi craterMareotis TempeMie craterMilankovič craterSisyphi Planum
Interactive icon.svg Interactive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor . Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to −8 km). Axes are latitude and longitude; Polar regions are noted.

See also

Related Research Articles

<span class="mw-page-title-main">Amazonis Planitia</span> Planitia on Mars

Amazonis Planitia is one of the smoothest plains on Mars. It is located between the Tharsis and Elysium volcanic provinces, to the west of Olympus Mons, in the Amazonis and Memnonia quadrangles, centered at 24.8°N 196.0°E. The plain's topography exhibits extremely smooth features at several different lengths of scale. A large part of the Medusae Fossae Formation lies in Amazonis Planitia.

<span class="mw-page-title-main">Memnonia quadrangle</span> Map of Mars

The Memnonia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Memnonia quadrangle is also referred to as MC-16.

<span class="mw-page-title-main">Arabia Terra</span> Martian upland region

Arabia Terra is a large upland region in the north of Mars that lies mostly in the Arabia quadrangle, but a small part is in the Mare Acidalium quadrangle. It is densely cratered and heavily eroded. This battered topography indicates great age, and Arabia Terra is presumed to be one of the oldest terrains on the planet. It covers as much as 4,500 km (2,800 mi) at its longest extent, centered roughly at 21°N6°E with its eastern and southern regions rising 4 km (13,000 ft) above the north-west. Alongside its many craters, canyons wind through the Arabia Terra, many emptying into the large northern lowlands of the planet, which borders Arabia Terra to the north.

<span class="mw-page-title-main">Noachis quadrangle</span> Map of Mars

The Noachis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Noachis quadrangle is also referred to as MC-27.

<span class="mw-page-title-main">Casius quadrangle</span> Map of Mars

The Casius quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the north-central portion of Mars' eastern hemisphere and covers 60° to 120° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Casius quadrangle is also referred to as MC-6. Casius quadrangle contains part of Utopia Planitia and a small part of Terra Sabaea. The southern and northern borders of the Casius quadrangle are approximately 3,065 km and 1,500 km wide, respectively. The north to south distance is about 2,050 km. The quadrangle covers an approximate area of 4.9 million square km, or a little over 3% of Mars' surface area.

<span class="mw-page-title-main">Cebrenia quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Cebrenia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northeastern portion of Mars' eastern hemisphere and covers 120° to 180° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Cebrenia quadrangle is also referred to as MC-7. It includes part of Utopia Planitia and Arcadia Planitia. The southern and northern borders of the Cebrenia quadrangle are approximately 3,065 km (1,905 mi) and 1,500 km (930 mi) wide, respectively. The north to south distance is about 2,050 km (1,270 mi). The quadrangle covers an approximate area of 4.9 million square km, or a little over 3% of Mars' surface area.

<span class="mw-page-title-main">Diacria quadrangle</span> Map of Mars

The Diacria quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northwestern portion of Mars' western hemisphere and covers 180° to 240° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Diacria quadrangle is also referred to as MC-2. The Diacria quadrangle covers parts of Arcadia Planitia and Amazonis Planitia.

<span class="mw-page-title-main">Arcadia quadrangle</span> Map of Mars

The Arcadia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the north-central portion of Mars’ western hemisphere and covers 240° to 300° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Arcadia quadrangle is also referred to as MC-3.

<span class="mw-page-title-main">Amenthes quadrangle</span> Map of Mars

The Amenthes quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Amenthes quadrangle is also referred to as MC-14. The quadrangle covers the area from 225° to 270° west longitude and from 0° to 30° north latitude on Mars. Amenthes quadrangle contains parts of Utopia Planitia, Isidis Planitia, Terra Cimmeria, and Tyrrhena Terra.

<span class="mw-page-title-main">Elysium quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Elysium quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Elysium quadrangle is also referred to as MC-15.

<span class="mw-page-title-main">Amazonis quadrangle</span> Map of Mars

The Amazonis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Amazonis quadrangle is also referred to as MC-8.

<span class="mw-page-title-main">Oxia Palus quadrangle</span> Map of Mars

The Oxia Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Oxia Palus quadrangle is also referred to as MC-11.

<span class="mw-page-title-main">Phoenicis Lacus quadrangle</span> Map of Mars

The Phoenicis Lacus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Phoenicis Lacus quadrangle is also referred to as MC-17. Parts of Daedalia Planum, Sinai Planum, and Solis Planum are found in this quadrangle. Phoenicis Lacus is named after the phoenix which according to myth burns itself up every 500 years and then is reborn.

<span class="mw-page-title-main">Margaritifer Sinus quadrangle</span> One of a series of 30 quadrangle maps of Mars

The Margaritifer Sinus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Margaritifer Sinus quadrangle is also referred to as MC-19. The Margaritifer Sinus quadrangle covers the area from 0° to 45° west longitude and 0° to 30° south latitude on Mars. Margaritifer Sinus quadrangle contains Margaritifer Terra and parts of Xanthe Terra, Noachis Terra, Arabia Terra, and Meridiani Planum.

<span class="mw-page-title-main">Argyre quadrangle</span> Map of Mars

The Argyre quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Argyre quadrangle is also referred to as MC-26. It contains Argyre Planitia and part of Noachis Terra.

<span class="mw-page-title-main">Tikhonravov (crater)</span> Crater on Mars

Tikhonravov is a large, eroded crater in the Arabia quadrangle of Mars. It is 344 kilometres (214 mi) in diameter and was named after Mikhail Tikhonravov, a Russian rocket scientist. Tikhonravov is believed to have once held a giant lake that drained into the 4,500-kilometre-long (2,800 mi) Naktong-Scamander-Mamers lake-chain system. An inflow and outflow channel has been identified. Many craters once contained lakes.

In planetary geology, a pedestal crater is a crater with its ejecta sitting above the surrounding terrain and thereby forming a raised platform. They form when an impact crater ejects material which forms an erosion-resistant layer, thus causing the immediate area to erode more slowly than the rest of the region. Some pedestals have been accurately measured to be hundreds of meters above the surrounding area. This means that hundreds of meters of material were eroded away. The result is that both the crater and its ejecta blanket stand above the surroundings. Pedestal craters were first observed during the Mariner missions.

HiWish is a program created by NASA so that anyone can suggest a place for the HiRISE camera on the Mars Reconnaissance Orbiter to photograph. It was started in January 2010. In the first few months of the program 3000 people signed up to use HiRISE. The first images were released in April 2010. Over 12,000 suggestions were made by the public; suggestions were made for targets in each of the 30 quadrangles of Mars. Selected images released were used for three talks at the 16th Annual International Mars Society Convention. Below are some of the over 4,224 images that have been released from the HiWish program as of March 2016.

<span class="mw-page-title-main">Groundwater on Mars</span> Water held in permeable ground

Rain and snow was a regular occurrence on Mars in the past; especially in the Noachian and early Hesperian epochs. Water was theorized to seep into the ground until it reached a formation that would not allow it to penetrate further. Water then accumulated forming a saturated layer. Deep aquifers may still exist.

The common surface features of Mars include dark slope streaks, dust devil tracks, sand dunes, Medusae Fossae Formation, fretted terrain, layers, gullies, glaciers, scalloped topography, chaos terrain, possible ancient rivers, pedestal craters, brain terrain, and ring mold craters.

References

  1. Davies, M.E.; Batson, R.M.; Wu, S.S.C. "Geodesy and Cartography" in Kieffer, H.H.; Jakosky, B.M.; Snyder, C.W.; Matthews, M.S., Eds. Mars. University of Arizona Press: Tucson, 1992.
  2. Dohm J.; et al. (2007). "Possible ancient giant basin and related water enrichment in the Arabia Terra province, Mars". Icarus. 190 (1): 74–92. Bibcode:2007Icar..190...74D. doi:10.1016/j.icarus.2007.03.006.
  3. Fassett C., Head III (2007). "Layered mantling deposits in northeast Arabia Terra, Mars: Noachian-Hesperian sedimentation, erosion, and terrain inversion". Journal of Geophysical Research. 112 (E8): 2875. Bibcode:2007JGRE..112.8002F. doi: 10.1029/2006je002875 .
  4. U.S. Department of the Interior U.S. Geological Survey, Topographic Map of the Eastern Region of Mars M 15M 0/270 2AT, 1991
  5. Grotzinger, J. and R. Milliken (eds.) 2012. Sedimentary Geology of Mars. SEPM
  6. "Sorry - You Seem to Have Lost Your Way - SpaceRef". Archived from the original on 12 September 2012.
  7. Fassett, C. and J. Head III. 2008. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus: 198. 39–56.
  8. Andrews-Hanna J. C., Phillips R. J., Zuber M. T. (2007). "Meridiani Planum and the global hydrology of Mars". Nature. 446 (7132): 163–166. Bibcode:2007Natur.446..163A. doi:10.1038/nature05594. PMID   17344848. S2CID   4428510.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Andrews-Hanna J. C., Zuber M. T., Arvidson R. E., Wiseman S. M. (2010). "Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra". J. Geophys. Res. 115 (E6): E06002. Bibcode:2010JGRE..115.6002A. doi:10.1029/2009JE003485. hdl: 1721.1/74246 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. "Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet". Archived from the original on 14 June 2006. Retrieved 8 July 2006.
  11. Grotzinger J. P.; et al. (2005). "Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet". Sci. Lett. 240 (1): 11–72. Bibcode:2005E&PSL.240...11G. doi:10.1016/j.epsl.2005.09.039.
  12. McLennan S. M.; et al. (2005). "Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars". Earth Planet. Sci. Lett. 240 (1): 95–121. Bibcode:2005E&PSL.240...95M. doi:10.1016/j.epsl.2005.09.041.
  13. Squyres S. W., Knoll A. H. (2005). "Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth Planet". Sci. Lett. 240 (1): 1–10. Bibcode:2005E&PSL.240....1S. doi:10.1016/j.epsl.2005.09.038.
  14. Squyres S. W.; et al. (2006). "Two years at Meridiani Planum: Results from the Opportunity rover" (PDF). Science. 313 (5792): 1403–1407. Bibcode:2006Sci...313.1403S. doi:10.1126/science.1130890. PMID   16959999. S2CID   17643218.
  15. M. Wiseman, J. C. Andrews-Hanna, R. E. Arvidson3, J. F. Mustard, K. J. Zabrusky DISTRIBUTION OF HYDRATED SULFATES ACROSS ARABIA TERRA USING CRISM DATA: IMPLICATIONS FOR MARTIAN HYDROLOGY. 42nd Lunar and Planetary Science Conference (2011) 2133.pdf
  16. Weitz, C. et al. 2017. LIGHT-TONED MATERIALS OF MELAS CHASMA: EVIDENCE FOR THEIR FORMATION ON MARS. Lunar and Planetary Science XLVIII (2017) 2794.pdf
  17. Weitz C.; et al. (2015). "Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars". Icarus. 251: 291–314. Bibcode:2015Icar..251..291W. doi:10.1016/j.icarus.2014.04.009.
  18. Weitz C (2016). "Stratigraphy and formation of clays, sulfates, and hydrated silica within a depression in Coprates Catena, Mars". Journal of Geophysical Research: Planets. 121 (5): 805–835. Bibcode:2016JGRE..121..805W. doi: 10.1002/2015JE004954 .
  19. Bishop J.; et al. (2013). "What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars". Planetary and Space Science. 86: 130–149. Bibcode:2013P&SS...86..130B. doi:10.1016/j.pss.2013.05.006.
  20. "Stones, Wind, and Ice: A Guide to Martian Impact Craters". Lpi.usra.edu. Retrieved 29 August 2011.
  21. 1 2 Hugh H. Kieffer (1992). Mars. University of Arizona Press. ISBN   978-0-8165-1257-7 . Retrieved 7 March 2011.
  22. 1 2 http://hirise.lpl.eduPSP_008508_1870%5B%5D
  23. Bleacher, J. and S. Sakimoto. Pedestal Craters, A Tool For Interpreting Geological Histories and Estimating Erosion Rates. LPSC
  24. Archived 18 January 2010 at the Wayback Machine
  25. "Pow! Mars Hit by Space Rocks 200 Times a Year". Space.com . 20 May 2013.
  26. "Brand New Impact Crater Shows up on Mars". 5 February 2014.
  27. Daubar, I., C. Dundas, S. Byrne, P. Geissler, G. Bart, A. McEwen, P. Russell, M. Chojnacki, M. Golombek 2016. Changes in blast zone albedo patterns around new martian impact craters. Icarus: 267, 86-105.
  28. Allen, C., D. Oehler, and E. Venechuk. Prospecting for Methane in Arabia Terra, Mars – First Results. Lunar and Planetary Science XXXVII (2006). 1193.pdf-1193.pdf.
  29. "Reconciling Methane Variations on Mars | SpaceRef – Your Space Reference". Spaceref.com:80. 6 August 2009. Retrieved 29 August 2011.
  30. "Mystery on Mars: Why Methane Fades Away So Fast". Space.com. 20 September 2010. Retrieved 29 August 2011.
  31. DOI.org [ dead link ]
  32. "Structural geology on the Colorado Plateau". Folk.uib.no. Archived from the original on 24 July 2011. Retrieved 29 August 2011.
  33. Schultz, R. 2009. Fractures and Deformation Bands in Rock: A Field Guide and Journey into Geologic Fracture Mechanics. Oxford University Press
  34. "Mars Reconnaissance Orbiter: Multimedia". Mars.jpl.nasa.gov. Retrieved 29 August 2011.
  35. Schultz, R. and R. Siddharthan. 2005. A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics: 411. 1–18.
  36. [ dead link ]
  37. Hartmann, W. 2003. A Traveler's Guide to Mars. Workman Publishing. NY NY.
  38. Dohm, J. et al. 2007. Possible ancient giant basin and related water enrichment in the Arabia Terra province, Mars. Icarus: 190. 74–92.
  39. Edgett, K. and M. Malin. 2002. Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophysical Research Letters: 29. 32.
  40. Schorghofer N; et al. (2007). "Three decades of slope streak activity on Mars". Icarus. 191 (1): 132–140. Bibcode:2007Icar..191..132S. doi:10.1016/j.icarus.2007.04.026.
  41. [ dead link ]
  42. "spcae.com". spcae.com. Archived from the original on 21 February 2015. Retrieved 28 March 2011.
  43. [ dead link ]
  44. [ dead link ]
  45. "Mars Spirit Rover Gets Energy Boost From Cleaner Solar Panels". Sciencedaily.com. 19 February 2009. Retrieved 28 March 2011.
  46. Moore, Patrick (2 June 1990). Atlas of the Solar System . Crescent Books. ISBN   978-0-517-00192-9.
  47. Burleigh Kaylan J., Melosh Henry J., Tornabene Livio L., Ivanov Boris, McEwen Alfred S., Daubar Ingrid J. (2012). "Impact air blast triggers dust avalanches on Mars". Icarus. 217 (1): 194. Bibcode:2012Icar..217..194B. doi:10.1016/j.icarus.2011.10.026.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. "Red Planet Report | What's new with Mars".
  49. Head, J., J. Mustard. 2006. Breccia dikes and crater-related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary, Meteorit. Planet Science: 41, 1675-1690.
  50. Mangold; et al. (2007). "Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust" (PDF). J. Geophys. Res. 112 (E8): E08S04. Bibcode:2007JGRE..112.8S04M. doi:10.1029/2006JE002835. S2CID   15188454.
  51. Mustard et al., 2007. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian, J. Geophys. Res., 112.
  52. Mustard; et al. (2009). "Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis Basin". J. Geophys. Res. 114 (7): E00D12. Bibcode:2009JGRE..114.0D12M. doi: 10.1029/2009JE003349 . S2CID   17913229.
  53. Morton, Oliver (2002). Mapping Mars: Science, Imagination, and the Birth of a World. New York: Picador USA. p. 98. ISBN   0-312-24551-3.
  54. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved 16 December 2012.
  55. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA /Jet Propulsion Laboratory. 16 February 2002. Retrieved 16 December 2012.
  56. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved 16 December 2012.
  57. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA /Jet Propulsion Laboratory. 16 February 2002. Retrieved 16 December 2012.