Syrtis Major quadrangle

Last updated
Syrtis Major quadrangle
USGS-Mars-MC-13-SyrtisMajorRegion-mola.png
Map of Syrtis Major quadrangle from Mars Orbiter Laser Altimeter (MOLA) data. The highest elevations are red and the lowest are blue.
Coordinates 15°00′N292°30′W / 15°N 292.5°W / 15; -292.5
Image of the Syrtis Major Quadrangle (MC-13). The central part contains Syrtis Major Planum. The east includes Isidis basin and the west and north includes heavily cratered highlands. Syrtis Major MC-13.jpg
Image of the Syrtis Major Quadrangle (MC-13). The central part contains Syrtis Major Planum. The east includes Isidis basin and the west and north includes heavily cratered highlands.

The Syrtis Major quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Syrtis Major quadrangle is also referred to as MC-13 (Mars Chart-13). [1]

Contents

The quadrangle covers longitudes 270° to 315° west and latitudes 0° to 30° north on Mars. Syrtis Major quadrangle includes Syrtis Major Planum and parts of Terra Sabaea and Isidis Planitia.

Syrtis Major is an old shield volcano with a central depression that is elongated in a north–south direction. It contains the calderas Meroe Patera and Nili Patera. [2] Interesting features in the area include dikes and inverted terrain.

The Beagle 2 lander was about to land near the quadrangle, particularly in the eastern part of Isidis Planitia, in December 2003, when contact with the craft was lost. In January 2015, NASA reported the Beagle 2 had been found on the surface in Isidis Planitia (location is about 11°31′35″N90°25′46″E / 11.5265°N 90.4295°E / 11.5265; 90.4295 ). [3] [4] High-resolution images captured by the Mars Reconnaissance Orbiter identified the lost probe, which appears to be intact. [5] [6] [7]

In November 2018, NASA announced that Jezero crater was chosen as the landing site for the planned Mars 2020 rover mission. [8] [9] Jezero crater is in the Syrtis Major quadrangle at (at 18°51′18″N77°31′08″E / 18.855°N 77.519°E / 18.855; 77.519 ) [10]

Discovery and name

The name Syrtis Major is derived from the classical Roman name Syrtis maior for the Gulf of Sidra on the coast of Libya (classical Cyrenaica). It is near Cyrene which is the place where "Simon" who carried the cross of Jesus was from. [11] [12] [13]

Syrtis Major is a distinctly dark region standing out against the lighter surrounding highlands, and was the first documented surface feature of another planet. It was discovered by Christiaan Huygens, who included it in a drawing of Mars in 1659. The feature was originally known as the Hourglass Sea but has been given different names by different cartographers. In 1840, Johann Heinrich von Mädler compiled a map of Mars from his observations and called the feature Atlantic Canale. In Richard Proctor's 1867 map it is called then Kaiser Sea (after Frederik Kaiser of the Leiden Observatory). Camille Flammarion called it the Mer du Sablier (French for "Hourglass Sea") when he revised Proctor's nomenclature in 1876. The name "Syrtis Major" was chosen by Giovanni Schiaparelli when he created a map based on observations made during Mars' close approach to Earth in 1877. [14] [15]

Igneous rocks

Syrtis Major is of great interest to geologists because several types of igneous rocks have been found there with orbiting spacecraft. Besides basalt, dacite and granite have been found there. Dacite originates under volcanoes in magma chambers. Dacites form at the top of the chamber, after heavy minerals (olivine and pyroxene) containing iron and magnesium have settled to the bottom. Granite is formed by an even more complex process. [16]

Some areas of Syrtis Major contain large amounts of the mineral olivine. Olivine turns into other minerals very rapidly in the presence of water, so a high abundance of olivine suggests that for a long time little water has been there. [17]

Minerals

A variety of important minerals have been discovered near Nili Fossae, a major trough system in Syrtis major. Besides a large exposure of olivine located in Nili Fossae. Other minerals found there include carbonates, aluminum smectite, iron/magnesium smectite, hydrated silica, kaolinite group minerals, and iron oxides. [18] [19] In December 2008, NASA's Mars Reconnaissance Orbiter found that rocks at Nili Fossae contain carbonate minerals, a geologically significant discovery. [20] [21] [22] Later research published in October 2010, described a large deposit of carbonate rocks found inside Leighton Crater at a level that was once buried 4 miles (6 km) below the surface. Finding carbonates in an underground location strongly suggests that Mars was warmer and had more atmospheric carbon dioxide and ancient seas. Because the carbonates were near silicate minerals and clays hydrothermal systems like the deep sea vents on Earth may have been present. [23] [24]

Other minerals found by the MRO are aluminum smectite, iron/magnesium smectite, hydrated silica, kaolinite group minerals, iron oxides, and talc. [19] [24] NASA scientists discovered that Nili Fossae is the source of plumes of methane, raising the question of whether this source originates from biological sources. [25] [26]

Research published in the fall of 2010, describes the discovery of hydrated silica on the flanks of a volcanic cone. The deposit was from a steam fumarole or hot spring, and it represents a recent habitable microenvironment. The 100-meter-high (330 ft) cone rests on the floor of Nili Patera. Observations were obtained with NASA's Mars Reconnaissance Orbiter. [27]

Dikes

Narrow ridges occur in some places on Mars. They may be formed by different means, but some are probably caused by molten rock moving underground, cooling into hard rock, then being exposed by the erosion of softer, surrounding materials. Such a feature is termed a dike. They are common on Earth—some famous ones are Shiprock, New Mexico; [28] around Spanish Peaks, Colorado; [29] [30] and the "Iron Dike" in Rocky Mountain National Park, Colorado. [31]

The discovery on Mars of dikes that were formed from molten rock is highly significant because dikes indicate the existence of intrusive igneous activity. On the Earth such activity is associated with precious metals like gold, silver, and tellurium. [32] Dikes and other intrusive structures are common in the Cripple Creek Mining District of Colorado; [32] the Battle Mountain-Eureka area in north-central Nevada, famous for gold and molybdenum deposits; [33] and around the Franklin dike swarm in Canada. Mapping the presence of dikes allows us to understand how magma (molten rock under the ground) travels and where it could have interacted with surrounding rock, thus producing valuable ores. Deposits of important minerals are also made by dikes and other igneous intrusions heating water which then dissolves minerals that are deposited in cracks in nearby rock. [34] One would expect a great deal of intrusive igneous activity to occur on Mars because it is believed there is more igneous activity under the ground than on top, and Mars has many huge volcanoes. [35]

Linear ridge networks

Some crater floors in the Syrtis Major area show elongated ridges in a lattice-like pattern. [36] Such patterns are typical of faults and breccia dikes formed as a result of an impact. Some have suggested that these linear ridge networks are dikes made up of molten rock; others have advanced the idea that other fluids such as water were involved. [37] The ridges are found where there has been enhanced erosion. Pictures below show examples of these dikes. Water may flow along faults. The water often carries minerals that serve to cement rock materials thus making them harder. Later when the whole area undergoes erosion the dikes will remain as ridges because they are more resistant to erosion. [38] This discovery may be of great importance for future colonization of Mars because these types of faults and breccia dikes on earth are associated with key mineral resources. [39] [40] It has been estimated that 25% of the Earth's impacts are connected to mineral production. [41] The largest gold deposit on Earth is the Vredefort 300 km diameter impact structure in South Africa. [42] Perhaps, when people live on Mars these kinds of areas will be mined as they are on earth. [43]

Buttes

Many places on Mars have buttes that are similar to buttes on Earth, such as the famous ones in Monument Valley, Utah. Buttes are formed when most of a layer(s) of rocks are removed from an area. Buttes usually have a hard, erosion resistant cap rock on the top. The cap rock causes the top of a butte to be flat. An example of a butte in the Syrtis Major quadrangle is shown below.

Dunes

Sand dunes are found all over Mars. Often sand dunes will form in low areas, for example on the floor of ancient river valleys. Dunes on the floor of Arnus Vallis, an old river valley are visible in a picture below. Dunes in valleys on Mars usually lie at right angles to the valley walls.

Streaks

Many areas of Mars change their shape and/or coloration. For many years, astronomers observing regular changes on Mars when the seasons changed, thought that what they saw was evidence of vegetation growing. After close-up inspection with a number of spacecraft, other causes were discovered. Basically, the changes are caused by the effects of the wind blowing dust around. Sometimes, fine bright dust settles on the dark basalt rock making the surface appear lighter, at other times the light-toned dust will be blown away; thus making the surface darken—just as if vegetation were growing. Mars has frequent regional or global dust storms that coat the surface with fine bright dust. In the THEMIS image below, white streaks are seen downwind of craters. The streaks are not too bright; they appear bright because of contrast with the dark volcanic rock basalt which makes up the surface. [44]

Inverted relief

Some places on Mars show inverted relief. In these locations, a stream bed may be a raised feature, instead of a valley. The inverted former stream channels may be caused by the deposition of large rocks or due to cementation. In either case erosion would erode the surrounding land and leave the old channel as a raised ridge because the ridge would be more resistant to erosion. Images below, taken with HiRISE show sinuous ridges that are old channels that have become inverted. [45]

Methane

For several years, researchers have found methane in the atmosphere of Mars. After study, it was determined to be coming from a point in Syrtis Major, located at 10° N and 50° E. [46] A recent study indicates that to match the observations of methane, there must be something that quickly destroys the gas, otherwise it would be spread all through the atmosphere instead of being concentrated in one location. There may be something in the soil that oxidizes the gas before it has a chance to spread. If this is so, that same chemical would destroy organic compounds, thus life would be very difficult on Mars. [47]

Layers

Many places on Mars show rocks arranged in layers. Rock can form layers in a variety of ways. Volcanoes, wind, or water can produce layers. [48] A detailed discussion of layering with many Martian examples can be found in Sedimentary Geology of Mars. [49]

Channels

There is enormous evidence that water once flowed in river valleys on Mars. [50] [51] Images of curved channels have been seen in images from Mars spacecraft dating back to the early 1970s with the Mariner 9 orbiter. [52] [53] [54] [55] Indeed, a study published in June 2017, calculated that the volume of water needed to carve all the channels on Mars was even larger than the proposed ocean that the planet may have had. Water was probably recycled many times from the ocean to rainfall around Mars. [56] [57]

Hollows

Other features

Other Mars quadrangles

Interactive icon.svg Clickable image of the 30 cartographic quadrangles of Mars, defined by the USGS. [59] [62] Quadrangle numbers (beginning with MC for "Mars Chart") [63] and names link to the corresponding articles. North is at the top; 0°N180°W / 0°N 180°W / 0; -180 is at the far left on the equator. The map images were taken by the Mars Global Surveyor.
()

Interactive Mars map

Interactive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to -8 km). Axes are latitude and longitude; Polar regions are noted.
(See also: Mars Rovers map and Mars Memorial map) (view * discuss) Mars Map.JPGCydonia MensaeGale craterHolden craterJezero craterLomonosov craterLyot craterMalea PlanumMaraldi craterMareotis TempeMie craterMilankovič craterSisyphi Planum
Interactive icon.svg Interactive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor . Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to −8 km). Axes are latitude and longitude; Polar regions are noted.

See also

Related Research Articles

<span class="mw-page-title-main">Amazonis Planitia</span> Planitia on Mars

Amazonis Planitia is one of the smoothest plains on Mars. It is located between the Tharsis and Elysium volcanic provinces, to the west of Olympus Mons, in the Amazonis and Memnonia quadrangles, centered at 24.8°N 196.0°E. The plain's topography exhibits extremely smooth features at several different lengths of scale. A large part of the Medusae Fossae Formation lies in Amazonis Planitia.

<span class="mw-page-title-main">Memnonia quadrangle</span> Map of Mars

The Memnonia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Memnonia quadrangle is also referred to as MC-16.

<span class="mw-page-title-main">Arabia Terra</span> Martian upland region

Arabia Terra is a large upland region in the north of Mars that lies mostly in the Arabia quadrangle, but a small part is in the Mare Acidalium quadrangle. It is densely cratered and heavily eroded. This battered topography indicates great age, and Arabia Terra is presumed to be one of the oldest terrains on the planet. It covers as much as 4,500 km (2,800 mi) at its longest extent, centered roughly at 21°N6°E with its eastern and southern regions rising 4 km (13,000 ft) above the north-west. Alongside its many craters, canyons wind through the Arabia Terra, many emptying into the large northern lowlands of the planet, which borders Arabia Terra to the north.

<span class="mw-page-title-main">Terra Sabaea</span> Terra on Mars

Terra Sabaea is a large area on Mars. Its coordinates are 2°N42°E and it covers 4,700 kilometres (2,900 mi) at its broadest extent. It was named in 1979 after a classic albedo feature on the planet. Terra Sabaea is fairly large and parts of it are found in five quadrangles: Arabia quadrangle, Syrtis Major quadrangle, Iapygia quadrangle, Ismenius Lacus quadrangle, and Sinus Sabaeus quadrangle.

<span class="mw-page-title-main">Casius quadrangle</span> Map of Mars

The Casius quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the north-central portion of Mars' eastern hemisphere and covers 60° to 120° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Casius quadrangle is also referred to as MC-6. Casius quadrangle contains part of Utopia Planitia and a small part of Terra Sabaea. The southern and northern borders of the Casius quadrangle are approximately 3,065 km and 1,500 km wide, respectively. The north to south distance is about 2,050 km. The quadrangle covers an approximate area of 4.9 million square km, or a little over 3% of Mars' surface area.

<span class="mw-page-title-main">Arcadia quadrangle</span> Map of Mars

The Arcadia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the north-central portion of Mars’ western hemisphere and covers 240° to 300° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Arcadia quadrangle is also referred to as MC-3.

<span class="mw-page-title-main">Arabia quadrangle</span> Map of Mars

The Arabia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Arabia quadrangle is also referred to as MC-12.

<span class="mw-page-title-main">Amenthes quadrangle</span> Map of Mars

The Amenthes quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Amenthes quadrangle is also referred to as MC-14. The quadrangle covers the area from 225° to 270° west longitude and from 0° to 30° north latitude on Mars. Amenthes quadrangle contains parts of Utopia Planitia, Isidis Planitia, Terra Cimmeria, and Tyrrhena Terra.

<span class="mw-page-title-main">Elysium quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Elysium quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Elysium quadrangle is also referred to as MC-15.

<span class="mw-page-title-main">Amazonis quadrangle</span> Map of Mars

The Amazonis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Amazonis quadrangle is also referred to as MC-8.

<span class="mw-page-title-main">Lunae Palus quadrangle</span> Quadrangle map of Mars

The Lunae Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is also referred to as MC-10. Lunae Planum and parts of Xanthe Terra and Chryse Planitia are found in the Lunae Palus quadrangle. The Lunae Palus quadrangle contains many ancient river valleys.

<span class="mw-page-title-main">Oxia Palus quadrangle</span> Map of Mars

The Oxia Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Oxia Palus quadrangle is also referred to as MC-11.

<span class="mw-page-title-main">Sinus Sabaeus quadrangle</span> Map of Mars

The Sinus Sabaeus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. It is also referred to as MC-20 . The Sinus Sabaeus quadrangle covers the area from 315° to 360° west longitude and 0° to 30° degrees south latitude on Mars. It contains Schiaparelli, a large, easily visible crater that sits close to the equator. The Sinus Sabaeus quadrangle contains parts of Noachis Terra and Terra Sabaea.

<span class="mw-page-title-main">Iapygia quadrangle</span> Map of Mars

The Iapygia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Iapygia quadrangle is also referred to as MC-21. It was named after the heel of the boot of Italy. That name was given by the Greeks It is part of a region of Italy named Apulia. The name Iapygia was approved in 1958.

<span class="mw-page-title-main">Mare Tyrrhenum quadrangle</span> Part of the surface of Mars

The Mare Tyrrhenum quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. This quadrangle is also referred to as MC-22. It contains parts of the regions Tyrrhena Terra, Hesperia Planum, and Terra Cimmeria.

<span class="mw-page-title-main">Phoenicis Lacus quadrangle</span> Map of Mars

The Phoenicis Lacus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Phoenicis Lacus quadrangle is also referred to as MC-17. Parts of Daedalia Planum, Sinai Planum, and Solis Planum are found in this quadrangle. Phoenicis Lacus is named after the phoenix which according to myth burns itself up every 500 years and then is reborn.

<span class="mw-page-title-main">Phaethontis quadrangle</span> Map of Mars

The Phaethontis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Phaethontis quadrangle is also referred to as MC-24.

Mars may contain ores that would be very useful to potential colonists. The abundance of volcanic features together with widespread cratering are strong evidence for a variety of ores. While nothing may be found on Mars that would justify the high cost of transport to Earth, the more ores that future colonists can obtain from Mars, the easier it would be to build colonies there.

<span class="mw-page-title-main">Hargraves (crater)</span> Crater on Mars

Hargraves is a Hesperian-age complex double-layered ejecta impact crater on Mars. It was emplaced near the crustal dichotomy in the vicinity of the Nili Fossae, the Syrtis Major volcanic plains, and the Isidis impact basin, and is situated within the Syrtis Major quadrangle. Hargraves has been the target of focused study because its ejecta apron is particularly well-preserved for a Martian crater of its size. It has been analogized to similar double-layered ejecta blankets on Earth, including that of the Ries impact structure, which was where the conceptual model for how such craters formed was first advanced.

Linear ridge networks are found in various places on Mars in and around craters. These features have also been called "polygonal ridge networks," "boxwork ridges", and "reticulate ridges." Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind. It is reasonable to think that on Mars impacts broke the ground with cracks since faults are often formed in impact craters on Earth. One could guess that these ridge networks were dikes, but dikes would go more or less in the same direction, as compared to these ridges that have a large variety of orientations. Since the ridges occur in locations with clay, these formations could serve as a marker for clay which requires water for its formation. Water here could have supported past life in these locations. Clay may also preserve fossils or other traces of past life.

References

  1. Davies, M. E.; Batson, R. M.; Wu, S. S. C. (1992). "Geodesy and Cartography". In Kieffer, H. H.; Jakosky, B. M.; Snyder, C. W.; Matthews, M. S. (eds.). Mars. Tucson: University of Arizona Press. ISBN   0-8165-1257-4.
  2. "Syrtis Major".
  3. Ellison, Doug (16 January 2015). "re Beagle 2 location on Mars => "Using HiView on image ESP_039308_1915_COLOR.JP2 I get 90.4295E 11.5265N"". Twitter & JPL . Retrieved 19 January 2015.
  4. Grecicius, Tony; Dunbar, Brian (16 January 2015). "Components of Beagle 2 Flight System on Mars". NASA . Retrieved 18 January 2015.
  5. Webster, Guy (16 January 2015). "'Lost' 2003 Mars Lander Found by Mars Reconnaissance Orbiter". NASA . Retrieved 16 January 2015.
  6. "Mars Orbiter Spots Beagle 2, European Lander Missing Since 2003". New York Times . Associated Press. 16 January 2015. Retrieved 17 January 2015.
  7. Amos, Jonathan (16 January 2015). "Lost Beagle2 probe found 'intact' on Mars". BBC . Retrieved 16 January 2015.
  8. Wall, Mike (19 November 2018). "Jezero Crater or Bust! NASA Picks Landing Site for Mars 2020 Rover". Space.com . Retrieved 20 November 2018.
  9. Mandelbaum, Ryan F. "NASA's Mars 2020 Rover Will Land in Jezero Crater". Gizmodo. Retrieved 2018-11-19.
  10. 1 2 Wray, James (6 June 2008). "Channel into Jezero Crater Delta". NASA . Retrieved 6 March 2015.
  11. https://ferrelljenkins.wordpress.com/2011/03/30/libya-and-the-bible-%E2%80%94-more-than-you-think/ [ user-generated source ]
  12. The Cambridge Bible for Schools and Colleges, vol. 59, 1897
  13. Gleig, G.; Stackhouse, Thomas (1817). "A history of the holy Bible, corrected and improved".
  14. Morton, Oliver (2002). Mapping Mars: Science, Imagination, and the Birth of a World . New York: Picador USA. pp.  14–15. ISBN   0-312-24551-3.
  15. William Sheehan. "The Planet Mars: A History of Observation and Discovery - Chapter 4: Areographers". Archived from the original on 2017-07-01. Retrieved 2007-09-07.
  16. Christensen, P. 2005. "The Many Faces of Mars". Scientific American. July, 2005.
  17. http://www.marsdaily.com/news-odyssey-05a.html%5B%5D
  18. "Nasa finds 'missing' Mars mineral"
  19. 1 2 Murchie, S. et al. 2009. "A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter". Journal of Geophysical Research: 114. E00D06.
  20. NASA finds 'missing' Mars mineral
  21. "Mars' Missing Atmosphere Likely Lost in Space". Space.com . 5 October 2015.
  22. Edwards, C., B. Ehlmann. 2015. "Carbon sequestration on Mars". Geology: doi: 10.1130/G36983.1.
  23. "Exposed Rocks Point to Water on Ancient Mars". Astrobiology Magazine . 2010-10-13. Archived from the original on 2011-06-29.{{cite web}}: CS1 maint: unfit URL (link)
  24. 1 2 1.Adrian J. Brown, Simon J. Hook, Alice M. Baldridge, James K. Crowley, Nathan T. Bridges, Bradley J. Thomson, Giles M. Marion, Carlos R. de Souza Filho, Janice L. Bishop. "Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars". Earth and Planetary Science Letters, 2010; doi : 10.1016/j.epsl.2010.06.018
  25. Mars Methane Found, Raising Possibility of Life
  26. New light on Mars methane mystery
  27. "Silica on Mars Volcano Tells of Wet and Cozy Past". 31 October 2010.
  28. "Mars Global Surveyor MOC2-1249 Release".
  29. Chronic, Halka (January 1980). Roadside Geology of Colorado. Mountain Press Publishing Company. ISBN   0-87842-105-X.
  30. Blatt, Harvey; Tracy, Robert (1995-12-15). Petrology, Second Edition: Igneous, Sedimentary, and Metamorphic. ISBN   0-7167-2438-3.
  31. Harris, Ann G.; Tuttle, Esther (1990). Geology of National Parks. Kendall/Hunt Publishing Company. ISBN   0-8403-4619-0.
  32. 1 2 "Geology of the Cripple Creek Mining District". Archived from the original on 2011-05-16. Retrieved 2010-11-13.
  33. http://www.mirandagold.com/s/Coal/Canyon.asp
  34. Namowitz, S. and D. Stone. 1975. Earth Science-The World We Live In. American Book Company. Ny, NY
  35. Crisp, J. 1984. "Rates of magma emplacement and volcanic output". J. Volcanlo. Geotherm. Res: 20. 177-211.
  36. Kerber, L., et al. 2017. Polygonal ridge networks on Mars: Diversity of morphologies and the special case of the Eastern Medusae Fossae Formation. Icarus. Volume 281. Pages 200-219
  37. Saper, L., J. Mustard. 2013. "Extensive linear ridge networks in Nili Fossae and Nilosyrtis, Mars: implications for fluid flow in the ancient crust". Geophysical Research Letters: 40, 245-249.
  38. "HiRISE | Ridges in Huo Hsing Vallis (PSP_008189_2080)".
  39. "Mining Mars? Where's the Ore? : Discovery News". Archived from the original on 2012-10-22. Retrieved 2010-06-11.
  40. West, M. and J. Clarke. 2010. Potential Martian Resources: Mechanisms and Terrestrial Analogues: 58. 574-582
  41. Mory, H.J. et al. 2000. "Woodleigh Carnarvon Basin, Western Australia: a new 120 km diameter impact structure". Earth and Planetary Science Letters: 177. 119-128
  42. Evens, K et al. 2005. The Sedimentary Record of Meteorite Impacts: An SEPM Research Conference. The Sedimentary Record: 3. 4-8.
  43. Head, J. and J. Mustard. 2006. "Breccia Dikes and Crater-Related Faults in Impact Craters on Mars: Erosion and Exposure on the Floor of a 75-km Diameter Crater at the Dichotomy Boundary". In Special Issue on Role of Volatiles and Atmospheres on Martian Impact Craters Meteoritics & Planetary Science.
  44. "Syrtis Major | Mars Odyssey Mission THEMIS".
  45. "HiRISE | Sinuous Ridges Near Aeolis Mensae". Archived from the original on 2016-03-05. Retrieved 2009-03-19.
  46. "Mystery on Mars: Why Methane Fades Away So Fast". Space.com . 20 September 2010.
  47. "Reconciling Methane Variations on Mars". 6 August 2009.
  48. "HiRISE | High Resolution Imaging Science Experiment". Hirise.lpl.arizona.edu?psp_008437_1750. Retrieved 2012-08-04.
  49. Grotzinger, J. and R. Milliken (eds.). 2012. Sedimentary Geology of Mars. SEPM.
  50. Baker, V.; et al. (2015). "Fluvial geomorphology on Earth-like planetary surfaces: a review". Geomorphology. 245: 149–182. doi:10.1016/j.geomorph.2015.05.002. PMC   5701759 . PMID   29176917.
  51. Carr, M. (1996). Water on Mars. Oxford Univ. Press. ISBN   0-19-509938-9.
  52. Baker, V. (1982). The Channels of Mars. Austin, TX: Univ. of Tex. Press. ISBN   0-292-71068-2.
  53. Baker, V.; et al. (1991). "Ancient oceans, ice sheets and the hydrological cycle on Mars". Nature. 352 (6336): 589–594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0. S2CID   4321529.
  54. Carr, M. (1979). "Formation of Martian flood features by release of water from confined aquifers". J. Geophys. Res. 84: 2995–3007. Bibcode:1979JGR....84.2995C. doi:10.1029/JB084iB06p02995.
  55. Komar, P. (1979). "Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on Earth". Icarus. 37 (1): 156–181. Bibcode:1979Icar...37..156K. doi:10.1016/0019-1035(79)90123-4.
  56. "How Much Water Was Needed to Carve Valleys on Mars? - SpaceRef". 5 June 2017.
  57. Luo, W.; et al. (2017). "New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate". Nature Communications. 8. Article number: 15766. Bibcode:2017NatCo...815766L. doi: 10.1038/ncomms15766 . PMC   5465386 . PMID   28580943.
  58. Staff (4 March 2015). "PIA19303: A Possible Landing Site for the 2020 Mission: Jezero Crater". NASA . Retrieved 7 March 2015.
  59. Morton, Oliver (2002). Mapping Mars: Science, Imagination, and the Birth of a World. New York: Picador USA. p. 98. ISBN   0-312-24551-3.
  60. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved December 16, 2012.
  61. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA /Jet Propulsion Laboratory. February 16, 2002. Retrieved December 16, 2012.
  62. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved December 16, 2012.
  63. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA /Jet Propulsion Laboratory. February 16, 2002. Retrieved December 16, 2012.