Lunae Palus quadrangle

Last updated
Lunae Palus quadrangle
USGS-Mars-MC-10-LunaePalusRegion-mola.png
Map of Lunae Palus quadrangle from Mars Orbiter Laser Altimeter (MOLA) data. The highest elevations are red and the lowest are blue.
Coordinates 15°00′N67°30′W / 15°N 67.5°W / 15; -67.5
Image of the Lunae Palus Quadrangle (MC-10). The central part includes Lunae Planum which, on the west and north borders, is dissected by Kasei Valles which, in turn, terminates in Chryse Planitia. PIA00170-MC-10-LunaePalusRegion-19980605.jpg
Image of the Lunae Palus Quadrangle (MC-10). The central part includes Lunae Planum which, on the west and north borders, is dissected by Kasei Valles which, in turn, terminates in Chryse Planitia.

The Lunae Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is also referred to as MC-10 (Mars Chart-10). [1] Lunae Planum and parts of Xanthe Terra and Chryse Planitia are found in the Lunae Palus quadrangle. The Lunae Palus quadrangle contains many ancient river valleys.

Contents

The quadrangle covers the area from 45° to 90° west longitude and 0° to 30° north latitude on Mars. The Viking 1 Lander (part of Viking program) landed in the quadrangle on July 20, 1976, at 22°24′N47°30′W / 22.4°N 47.5°W / 22.4; -47.5 . It was the first robot spacecraft to successfully land on the Red Planet. [2]

Results from Viking I mission

What would it look like walking around the landing site

The sky would be a light pink. The dirt would also appear pink. Rocks of many sizes would be spread about. One large rock, named Big Joe, is as big as a banquet table. Some boulders would show erosion due to the wind. [3] There would be many small sand dunes that are still active. The wind speed would typically be 7 meters per second (16 miles per hour). There would be a hard crust on the top of the soil similar to a deposit, called caliche which is common in the U.S. Southwest. [4] [5] Such crusts are formed by solutions of minerals moving up through soil and evaporating at the surface. [6]

Analysis of soil

"Big Joe" rock on Mars--viewed by the Viking 1 Lander (February 11, 1978) MarsViking1Lander-BigJoeRock-19780211.jpg
"Big Joe" rock on Mars—viewed by the Viking 1 Lander (February 11, 1978)

The soil resembled those produced from the weathering of basaltic lavas. The tested soil contained abundant silicon and iron, along with significant amounts of magnesium, aluminum, sulfur, calcium, and titanium. Trace elements, strontium and yttrium, were detected. The amount of potassium was five times lower than the average for the Earth's crust. Some chemicals in the soil contained sulfur and chlorine that were like those remaining after the evaporation of sea water. Sulfur was more concentrated in the crust on top of the soil than in the bulk soil beneath. The sulfur may be present as sulfates of sodium, magnesium, calcium, or iron. A sulfide of iron is also possible. [7] Both the Spirit rover and the Opportunity rover also found sulfates on Mars; consequently sulfates may be common on the Martian surface. [8] The Opportunity rover (landed in 2004 with advanced instruments) found magnesium sulfate and calcium sulfate at Meridiani Planum. [9] Using results from the chemical measurements, mineral models suggest that the soil could be a mixture of about 80% iron-rich clay, about 10% magnesium sulfate (kieserite?), about 5% carbonate (calcite), and about 5% iron oxides (hematite, magnetite, goethite?). These minerals are typical weathering products of mafic igneous rocks. [10] Studies with magnets aboard the landers indicated that the soil is 3–7% magnetic materials by weight. The magnetic chemicals could be magnetite and maghemite. These could come from the weathering of basalt rock. [11] [12] Experiments carried out by the Mars Spirit rover (landed in 2004) indicated that magnetite could explain the magnetic nature of the dust and soil on Mars. Magnetite was found in the soil and that the most magnetic part of the soil was dark. Magnetite is very dark. [13]

Search for life

Viking did three experiments looking for life. The results were surprising and interesting. Most scientists now believe that the data were due to inorganic chemical reactions of the soil. But a few still believe the results were due to living reactions. No organic chemicals were found in the soil; hence nearly all the scientific community thought that no life was found because no organic chemicals were detected. Not finding any organics was unusual since meteorites raining on Mars for 5 billion years or so would surely bring some organics. Moreover, dry areas of Antarctica do not have detectable organic compounds either, but they have organisms living in the rocks. [14] Mars has almost no ozone layer, unlike the Earth, so UV light sterilizes the surface and produces highly reactive chemicals such as peroxides that would oxidize any organic chemicals. [15] Perchlorate may be the oxidizing chemical. The Phoenix lander discovered the chemical perchlorate in the Martian Soil. Perchlorate is a strong oxidant so it may have destroyed any organic matter on the surface. [16] If it is widespread on Mars, carbon-based life would be difficult at the soil surface.

The question of life on Mars received a new, important twist when research, published in the Journal of Geophysical Research in September 2010, proposed that organic compounds were actually present in the soil analyzed by both Viking 1 and 2. NASA's Phoenix lander in 2008 detected perchlorate which can break down organic compounds. The study's authors found that perchlorate will destroy organics when heated and will produce chloromethane and dichloromethane, the identical chlorine compounds discovered by both Viking landers when they performed the same tests on Mars. Because perchlorate would have broken down any Martian organics, the question of whether or not Viking found life is still wide open. [17]

Mars Science Laboratory

Hypanis Vallis, in the Lunae Palus quadrangle, was one of the sites proposed as a landing site for the Mars Science Laboratory, popularly known as the Mars Curiosity rover. One aim of the Mars Science Laboratory is to search for signs of ancient life, as many Martian rocks occur in a context of hydrogeology, that is, they were formed in water, at the bottom of lakes or seas, or by water percolating through the soil, although Brown University researchers have recently suggested outgassing of steam to atmosphere from a new planet's interior can also produce the clay minerals seen in these rocks. [18]

Because such issues remain unresolved, it is hoped that a later mission could return samples from sites identified as offering best chances for remains of life. To bring the craft down safely, a 12-mile wide, smooth, flat circle was needed. Geologists hoped to examine places where water once ponded, [19] and to examine its sediment layers. The site eventually settled on for the Mars Science Laboratory was Gale Crater in the Aeolis quadrangle, and a successful landing took place there in 2012. The rover is still operational as of early 2019. NASA scientists believe Gale Crater's floor rocks are indeed sedimentary, formed in pooled water. [20]

Kasei Valles

Area around northern Kasei Valles, showing relationships among Kasei Valles, Bahram Vallis, Vedra Valles, Maumee Valles, and Maja Valles. Map location is in Lunae Palus quadrangle and includes parts of Lunae Planum and Chryse Planitia. Kasei Valles topolabled.JPG
Area around northern Kasei Valles, showing relationships among Kasei Valles, Bahram Vallis, Vedra Valles, Maumee Valles, and Maja Valles. Map location is in Lunae Palus quadrangle and includes parts of Lunae Planum and Chryse Planitia.

One of the most significant features of the Lunae Palus region, Kasei Valles, is one of the largest outflow channels on Mars. Like other outflow channels, it was carved by liquid water, probably during gigantic floods.

Kasei is about 2,400 kilometers (1,500 mi) long. Some sections of Kasei Valles are 300 kilometers (190 mi) wide. It begins in Echus Chasma, near Valles Marineris, and empties into Chryse Planitia, not far from where Viking 1 landed. Sacra Mensa, a large tableland, divides Kasei into northern and southern channels. It is one of the longest continuous outflow channels on Mars. At around 20° north latitude Kasei Valles splits into two channels, called Kasei Vallis Canyon and North Kasei Channel. These branches recombine at around 63° west longitude. Some parts of Kasei Valles are 2–3 km deep. [21]

Scientists suggest it was formed several episodes of flooding and maybe by some glacial activity. [22]

Craters

Fesenkov Crater Central Peak, as seen by HiRISE Fesenkov Crater Central Peak.JPG
Fesenkov Crater Central Peak, as seen by HiRISE

Impact craters generally have a rim with ejecta around them, in contrast volcanic craters usually do not have a rim or ejecta deposits. As craters get larger (greater than 10 km in diameter) they usually have a central peak. [23] The peak is caused by a rebound of the crater floor following the impact. [24] Sometimes craters will display layers. Craters can show us what lies deep under the surface.

Fossa

Large troughs (long narrow depressions) are called fossae in the geographical language used for Mars. This term is derived from Latin; therefore fossa is singular and fossae is plural. [25] Troughs form when the crust is stretched until it breaks. The stretching can be due to the large weight of a nearby volcano. Fossae/pit craters are common near volcanoes in the Tharsis and Elysium system of volcanoes. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Viking program</span> Pair of NASA landers and orbiters sent to Mars in 1976

The Viking program consisted of a pair of identical American space probes, Viking 1 and Viking 2, which landed on Mars in 1976. The mission effort began in 1968 and was managed by the NASA Langley Research Center. Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars from orbit, and a lander designed to study the planet from the surface. The orbiters also served as communication relays for the landers once they touched down.

<i>Viking 1</i> Robotic spacecraft sent to Mars

Viking 1 was the first of two spacecraft, along with Viking 2, each consisting of an orbiter and a lander, sent to Mars as part of NASA's Viking program. The lander touched down on Mars on July 20, 1976, the first successful Mars lander in history. Viking 1 operated on Mars for 2,307 days or 2245 Martian solar days, the longest extraterrestrial surface mission until the record was broken by the Opportunity rover on May 19, 2010.

<i>Viking 2</i> Space orbiter and lander sent to Mars

The Viking 2 mission was part of the American Viking program to Mars, and consisted of an orbiter and a lander essentially identical to that of the Viking 1 mission. Viking 2 was operational on Mars for 1281 sols. The Viking 2 lander operated on the surface for 1,316 days, or 1281 sols, and was turned off on April 12, 1980, when its batteries eventually failed. The orbiter worked until July 25, 1978, returning almost 16,000 images in 706 orbits around Mars.

<span class="mw-page-title-main">Gusev (Martian crater)</span> Crater on Mars

Gusev is a crater on the planet Mars and is located at 14.5°S 175.4°E and is in the Aeolis quadrangle. The crater is about 166 kilometers in diameter and formed approximately three to four billion years ago. It was named after Russian astronomer Matvey Gusev (1826–1866) in 1976.

<span class="mw-page-title-main">Sinus Meridiani</span> Albedo feature on Mars

Sinus Meridiani is an albedo feature on Mars stretching east-west just south of the planet's equator. It was named by the French astronomer Camille Flammarion in the late 1870s.

Vallis or valles is the Latin word for valley. It is used in planetary geology to name landform features on other planets.

<span class="mw-page-title-main">Chryse Planitia</span> Planitia on Mars

Chryse Planitia is a smooth circular plain in the northern equatorial region of Mars close to the Tharsis region to the west, centered at 28.4°N 319.7°E. Chryse Planitia lies partially in the Lunae Palus quadrangle, partially in the Oxia Palus quadrangle, partially in the Mare Acidalium quadrangle. It is 1600 km or 994 mi in diameter and with a floor 2.5 km below the average planetary surface altitude, and has been suggested to be an ancient buried impact basin, though this is contested. It has several features in common with lunar maria, such as wrinkle ridges. The density of impact craters in the 100 to 2,000 metres range is close to half the average for lunar maria.

<span class="mw-page-title-main">Memnonia quadrangle</span> Map of Mars

The Memnonia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Memnonia quadrangle is also referred to as MC-16.

<span class="mw-page-title-main">Scientific information from the Mars Exploration Rover mission</span>

NASA's 2003 Mars Exploration Rover Mission has amassed an enormous amount of scientific information related to the Martian geology and atmosphere, as well as providing some astronomical observations from Mars. This article covers information gathered by the Opportunity rover during the initial phase of its mission. Information on science gathered by Spirit can be found mostly in the Spirit rover article.

<span class="mw-page-title-main">Martian regolith</span> Fine regolith found on the surface of Mars

Martian regolith is the fine blanket of unconsolidated, loose, heterogeneous superficial deposits covering the surface of Mars. The term Martian soil typically refers to the finer fraction of regolith. So far, no samples have been returned to Earth, the goal of a Mars sample-return mission, but the soil has been studied remotely with the use of Mars rovers and Mars orbiters. Its properties can differ significantly from those of terrestrial soil, including its toxicity due to the presence of perchlorates.

<span class="mw-page-title-main">Cebrenia quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Cebrenia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northeastern portion of Mars' eastern hemisphere and covers 120° to 180° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Cebrenia quadrangle is also referred to as MC-7. It includes part of Utopia Planitia and Arcadia Planitia. The southern and northern borders of the Cebrenia quadrangle are approximately 3,065 km (1,905 mi) and 1,500 km (930 mi) wide, respectively. The north to south distance is about 2,050 km (1,270 mi). The quadrangle covers an approximate area of 4.9 million square km, or a little over 3% of Mars' surface area.

<span class="mw-page-title-main">Elysium quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Elysium quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Elysium quadrangle is also referred to as MC-15.

<span class="mw-page-title-main">Oxia Palus quadrangle</span> Map of Mars

The Oxia Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Oxia Palus quadrangle is also referred to as MC-11.

<span class="mw-page-title-main">Aeolis quadrangle</span> One of a series of 30 quadrangle maps of Mars

The Aeolis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Aeolis quadrangle is also referred to as MC-23 . The Aeolis quadrangle covers 180° to 225° W and 0° to 30° south on Mars, and contains parts of the regions Elysium Planitia and Terra Cimmeria. A small part of the Medusae Fossae Formation lies in this quadrangle.

<span class="mw-page-title-main">Margaritifer Sinus quadrangle</span> One of a series of 30 quadrangle maps of Mars

The Margaritifer Sinus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Margaritifer Sinus quadrangle is also referred to as MC-19. The Margaritifer Sinus quadrangle covers the area from 0° to 45° west longitude and 0° to 30° south latitude on Mars. Margaritifer Sinus quadrangle contains Margaritifer Terra and parts of Xanthe Terra, Noachis Terra, Arabia Terra, and Meridiani Planum.

<span class="mw-page-title-main">Maja Valles</span> Valles on Mars

The Maja Valles are a large system of ancient outflow channels in the Lunae Palus quadrangle on Mars.

Mars may contain ores that would be very useful to potential colonists. The abundance of volcanic features together with widespread cratering are strong evidence for a variety of ores. While nothing may be found on Mars that would justify the high cost of transport to Earth, the more ores that future colonists can obtain from Mars, the easier it would be to build colonies there.

To date, interplanetary spacecraft have provided abundant evidence of water on Mars, dating back to the Mariner 9 mission, which arrived at Mars in 1971. This article provides a mission by mission breakdown of the discoveries they have made. For a more comprehensive description of evidence for water on Mars today, and the history of water on that planet, see Water on Mars.

<span class="mw-page-title-main">Groundwater on Mars</span> Water held in permeable ground

Rain and snow were regular occurrences on Mars in the past; especially in the Noachian and early Hesperian epochs. Water was theorized to seep into the ground until it reached a formation that would not allow it to penetrate further. Water then accumulated forming a saturated layer. Deep aquifers may still exist.

<span class="mw-page-title-main">Composition of Mars</span> Branch of the geology of Mars

The composition of Mars covers the branch of the geology of Mars that describes the make-up of the planet Mars.

References

  1. Davies, M.E.; Batson, R.M.; Wu, S.S.C. “Geodesy and Cartography” in Kieffer, H.H.; Jakosky, B.M.; Snyder, C.W.; Matthews, M.S., Eds. Mars. University of Arizona Press: Tucson, 1992.
  2. On Mars: Exploration of the Red Planet. 1958–1978, SP-4212. (NASA)
  3. Mutch, T. et al. 1976. "The Surface of Mars: The View from the Viking 2 Lander". Science: 194. 1277–1283.
  4. Clark, B. et al. 1978. Implications of Abundant Hygroscopic Minerals in the Martian Regolith. Icarus: 34. 645–665
  5. Toulmin III, P. et al. 1977. "Geochemical and Mineralogical Interpretation of the Viking Inorganic Chemical Results". Journal of Geophysical Research: 82. 4624–4634
  6. Arvidson, R. A. Binder, and K. Jones. 1976. "The Surface of Mars". Scientific American: 238. 76–89.
  7. Clark, B. et al. 1976. "Inorganic Analysis of Martian Samples at the Viking Landing Sites". Science: 194. 1283–1288.
  8. Press Release Images: Opportunity. 25 June 2004 (JPL/NASA)
  9. Christensen, P. et al. 2004. "Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover". Science: 306. 1733–1739
  10. Baird, A. et al. 1976. "Mineralogic and Petrologic Implications of Viking Geochemical Results From Mars: Interim Report". Science: 194. 1288–1293.
  11. Hargraves, R. et al. 1976. Viking Magnetic Properties Investigation: Further Results. Science: 194. 1303–1309.
  12. Arvidson, R, A. Binder, and K. Jones. "The Surface of Mars". Scientific American
  13. Bertelsen, P. et al. 2004. "Magnetic Properties Experiments on the Mars Exploration rover Spirit at Gusev Crater". Science: 305. 827–829.
  14. Friedmann, E. 1982. "Endolithic Microorganisms in the Antarctic Cold Desert". Science: 215. 1045–1052.
  15. Hartmann, W. 2003. A Traveler's Guide to Mars. Workman Publishing. NY NY.
  16. NASA Attempts to Quash Mars Rumors. Cara McDonough, August 7, 2008.
  17. NASA/Jet Propulsion Laboratory. "Did Viking Mars landers find life's building blocks? Missing piece inspires new look at puzzle." ScienceDaily 5 September 2010.
  18. "Clay minerals on Mars may have formed in primordial steam bath".
  19. "The Floods of Iani Chaos | Mars Odyssey Mission THEMIS".
  20. NASA.gov
  21. Baker, V. 1982. The Channels of Mars. University of Texas Press. Austin
  22. http://themis.asu.edu/features_kaseivalles [ dead link ]
  23. "Stones, Wind, and Ice: A Guide to Martian Impact Craters".
  24. Hugh H. Kieffer (1992). Mars. University of Arizona Press. ISBN   978-0-8165-1257-7 . Retrieved 7 March 2011.
  25. "Mars Art Gallery Martian Feature Name Nomenclature".
  26. Skinner, J., L. Skinner, and J. Kargel. 2007. Re-assessment of Hydrovolcanism-based Resurfacing within the Galaxias Fossae Region of Mars. Lunar and Planetary Science XXXVIII (2007)