Drake equation

Last updated

Frank Drake Dr. Frank Drake.jpg
Frank Drake

The Drake equation is a probabilistic argument used to estimate the number of active, communicative extraterrestrial civilizations in the Milky Way Galaxy. [1] [2] [3]

Contents

The equation was formulated in 1961 by Frank Drake, not for purposes of quantifying the number of civilizations, but as a way to stimulate scientific dialogue at the first scientific meeting on the search for extraterrestrial intelligence (SETI). [4] [5] The equation summarizes the main concepts which scientists must contemplate when considering the question of other radio-communicative life. [4] It is more properly thought of as an approximation than as a serious attempt to determine a precise number.

Criticism related to the Drake equation focuses not on the equation itself, but on the fact that the estimated values for several of its factors are highly conjectural, the combined multiplicative effect being that the uncertainty associated with any derived value is so large that the equation cannot be used to draw firm conclusions.

Equation

The Drake equation is: [1]

where

and

This form of the equation first appeared in Drake's 1965 paper. [8] [9]

History

In September 1959, physicists Giuseppe Cocconi and Philip Morrison published an article in the journal Nature with the provocative title "Searching for Interstellar Communications". [10] [11] Cocconi and Morrison argued that radio telescopes had become sensitive enough to pick up transmissions that might be broadcast into space by civilizations orbiting other stars. Such messages, they suggested, might be transmitted at a wavelength of 21 cm (1,420.4  MHz). This is the wavelength of radio emission by neutral hydrogen, the most common element in the universe, and they reasoned that other intelligences might see this as a logical landmark in the radio spectrum.

Two months later, Harvard University astronomy professor Harlow Shapley speculated on the number of inhabited planets in the universe, saying "The universe has 10 million, million, million suns (10 followed by 18 zeros) similar to our own. One in a million has planets around it. Only one in a million million has the right combination of chemicals, temperature, water, days and nights to support planetary life as we know it. This calculation arrives at the estimated figure of 100 million worlds where life has been forged by evolution." [12]

Seven months after Cocconi and Morrison published their article, Drake began searching for extraterrestrial intelligence in an experiment called Project Ozma. It was the first systematic search for signals from communicative extraterrestrial civilizations. Using the 85 ft (26 m) dish of the National Radio Astronomy Observatory, Green Bank in Green Bank, West Virginia, Drake monitored two nearby Sun-like stars: Epsilon Eridani and Tau Ceti, slowly scanning frequencies close to the 21 cm wavelength for six hours per day from April to July 1960. [11] The project was well designed, inexpensive, and simple by today's standards. It detected no signals.

Soon thereafter, Drake hosted the first search for extraterrestrial intelligence conference on detecting their radio signals. The meeting was held at the Green Bank facility in 1961. The equation that bears Drake's name arose out of his preparations for the meeting. [13]

As I planned the meeting, I realized a few day[s] ahead of time we needed an agenda. And so I wrote down all the things you needed to know to predict how hard it's going to be to detect extraterrestrial life. And looking at them it became pretty evident that if you multiplied all these together, you got a number, N, which is the number of detectable civilizations in our galaxy. This was aimed at the radio search, and not to search for primordial or primitive life forms.

Frank Drake

The ten attendees were conference organizer J. Peter Pearman, Frank Drake, Philip Morrison, businessman and radio amateur Dana Atchley, chemist Melvin Calvin, astronomer Su-Shu Huang, neuroscientist John C. Lilly, inventor Barney Oliver, astronomer Carl Sagan, and radio-astronomer Otto Struve. [14] These participants called themselves "The Order of the Dolphin" (because of Lilly's work on dolphin communication), and commemorated their first meeting with a plaque at the observatory hall. [15] [16]

Usefulness

The Allen Telescope Array for SETI C G-K - DSC 0421.jpg
The Allen Telescope Array for SETI

The Drake equation results in a summary of the factors affecting the likelihood that we might detect radio-communication from intelligent extraterrestrial life. [2] [6] [17] The last three parameters, fi, fc, and L, are not known and are very difficult to estimate, with values ranging over many orders of magnitude (see § Criticism). Therefore, the usefulness of the Drake equation is not in the solving, but rather in the contemplation of all the various concepts which scientists must incorporate when considering the question of life elsewhere, [2] [4] and gives the question of life elsewhere a basis for scientific analysis. The equation has helped draw attention to some particular scientific problems related to life in the universe, for example abiogenesis, the development of multi-cellular life, and the development of intelligence itself. [18]

Within the limits of existing human technology, any practical search for distant intelligent life must necessarily be a search for some manifestation of a distant technology. After about 50 years, the Drake equation is still of seminal importance because it is a 'road map' of what we need to learn in order to solve this fundamental existential question. [2] It also formed the backbone of astrobiology as a science; although speculation is entertained to give context, astrobiology concerns itself primarily with hypotheses that fit firmly into existing scientific theories. Some 50 years of SETI have failed to find anything, even though radio telescopes, receiver techniques, and computational abilities have improved significantly since the early 1960s. SETI efforts since 1961 have conclusively ruled out widespread alien emissions near the 21 cm wavelength of the hydrogen frequency. [19]

Estimates

Original estimates

There is considerable disagreement on the values of these parameters, but the 'educated guesses' used by Drake and his colleagues in 1961 were: [1] [20] [21]

Inserting the above minimum numbers into the equation gives a minimum N of 20 (see: Range of results). Inserting the maximum numbers gives a maximum of 50,000,000. Drake states that given the uncertainties, the original meeting concluded that NL, and there were probably between 1000 and 100,000,000 planets with civilizations in the Milky Way Galaxy.

Current estimates

This section discusses and attempts to list the best current estimates for the parameters of the Drake equation.

Rate of star creation in this Galaxy, R

Calculations in 2010, from NASA and the European Space Agency indicate that the rate of star formation in this Galaxy is about 0.68–1.45  M of material per year. [22] [23] To get the number of stars per year, we divide this by the initial mass function (IMF) for stars, where the average new star's mass is about 0.5 M. [24] This gives a star formation rate of about 1.5–3 stars per year.

Fraction of those stars that have planets, fp

Analysis of microlensing surveys, in 2012, has found that fp may approach 1—that is, stars are orbited by planets as a rule, rather than the exception; and that there are one or more bound planets per Milky Way star. [25] [26]

Average number of planets that might support life per star that has planets, ne

In November 2013, astronomers reported, based on Kepler space telescope data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of sun-like stars and red dwarf stars within the Milky Way Galaxy. [27] [28] 11 billion of these estimated planets may be orbiting sun-like stars. [29] Since there are about 100 billion stars in the galaxy, this implies fp · ne is roughly 0.4. The nearest planet in the habitable zone is Proxima Centauri b, which is as close as about 4.2 light-years away.

The consensus at the Green Bank meeting was that ne had a minimum value between 3 and 5. Dutch science journalist Govert Schilling has opined that this is optimistic. [30] Even if planets are in the habitable zone, the number of planets with the right proportion of elements is difficult to estimate. [31] Brad Gibson, Yeshe Fenner, and Charley Lineweaver determined that about 10% of star systems in the Milky Way Galaxy are hospitable to life, by having heavy elements, being far from supernovae and being stable for a sufficient time. [32]

The discovery of numerous gas giants in close orbit with their stars has introduced doubt that life-supporting planets commonly survive the formation of their stellar systems. So-called hot Jupiters may migrate from distant orbits to near orbits, in the process disrupting the orbits of habitable planets.

On the other hand, the variety of star systems that might have habitable zones is not just limited to solar-type stars and Earth-sized planets. It is now estimated that even tidally locked planets close to red dwarf stars might have habitable zones, [33] although the flaring behavior of these stars might speak against this. [34] The possibility of life on moons of gas giants (such as Jupiter's moon Europa, or Saturn's moons Titan and Enceladus) adds further uncertainty to this figure. [35]

The authors of the rare Earth hypothesis propose a number of additional constraints on habitability for planets, including being in galactic zones with suitably low radiation, high star metallicity, and low enough density to avoid excessive asteroid bombardment. They also propose that it is necessary to have a planetary system with large gas giants which provide bombardment protection without a hot Jupiter; and a planet with plate tectonics, a large moon that creates tidal pools, and moderate axial tilt to generate seasonal variation. [36]

Fraction of the above that actually go on to develop life, fl

Geological evidence from the Earth suggests that fl may be high; life on Earth appears to have begun around the same time as favorable conditions arose, suggesting that abiogenesis may be relatively common once conditions are right. However, this evidence only looks at the Earth (a single model planet), and contains anthropic bias, as the planet of study was not chosen randomly, but by the living organisms that already inhabit it (ourselves). From a classical hypothesis testing standpoint, without assuming that the underlying distribution of fl is the same for all planets in the Milky Way, there are zero degrees of freedom, permitting no valid estimates to be made. If life (or evidence of past life) were to be found on Mars, Europa, Enceladus or Titan that developed independently from life on Earth it would imply a value for fl close to 1. While this would raise the number of degrees of freedom from zero to one, there would remain a great deal of uncertainty on any estimate due to the small sample size, and the chance they are not really independent.

Countering this argument is that there is no evidence for abiogenesis occurring more than once on the Earth—that is, all terrestrial life stems from a common origin. If abiogenesis were more common it would be speculated to have occurred more than once on the Earth. Scientists have searched for this by looking for bacteria that are unrelated to other life on Earth, but none have been found yet. [37] It is also possible that life arose more than once, but that other branches were out-competed, or died in mass extinctions, or were lost in other ways. Biochemists Francis Crick and Leslie Orgel laid special emphasis on this uncertainty: "At the moment we have no means at all of knowing" whether we are "likely to be alone in the galaxy (Universe)" or whether "the galaxy may be pullulating with life of many different forms." [38] As an alternative to abiogenesis on Earth, they proposed the hypothesis of directed panspermia, which states that Earth life began with "microorganisms sent here deliberately by a technological society on another planet, by means of a special long-range unmanned spaceship".

In 2020, a paper by scholars at the University of Nottingham proposed an "Astrobiological Copernican" principle, based on the Principle of Mediocrity, and speculated that "intelligent life would form on other [Earth-like] planets like it has on Earth, so within a few billion years life would automatically form as a natural part of evolution". In the authors' framework, fl, fi, and fc are all set to a probability of 1 (certainty). Their resultant calculation concludes there are more than thirty current technological civilizations in the galaxy (disregarding error bars). [39] [40]

Fraction of the above that develops intelligent life, fi

This value remains particularly controversial. Those who favor a low value, such as the biologist Ernst Mayr, point out that of the billions of species that have existed on Earth, only one has become intelligent and from this, infer a tiny value for fi. [41] Likewise, the Rare Earth hypothesis, notwithstanding their low value for ne above, also think a low value for fi dominates the analysis. [42] Those who favor higher values note the generally increasing complexity of life over time, concluding that the appearance of intelligence is almost inevitable, [43] [44] implying an fi approaching 1. Skeptics point out that the large spread of values in this factor and others make all estimates unreliable. (See Criticism).

In addition, while it appears that life developed soon after the formation of Earth, the Cambrian explosion, in which a large variety of multicellular life forms came into being, occurred a considerable amount of time after the formation of Earth, which suggests the possibility that special conditions were necessary. Some scenarios such as the snowball Earth or research into extinction events have raised the possibility that life on Earth is relatively fragile. Research on any past life on Mars is relevant since a discovery that life did form on Mars but ceased to exist might raise the estimate of fl but would indicate that in half the known cases, intelligent life did not develop.

Estimates of fi have been affected by discoveries that the Solar System's orbit is circular in the galaxy, at such a distance that it remains out of the spiral arms for tens of millions of years (evading radiation from novae). Also, Earth's large moon may aid the evolution of life by stabilizing the planet's axis of rotation.

There has been quantitative work to begin to define . One example is a Bayesian analysis published in 2020. In the conclusion, the author cautions that this study applies to Earth's conditions. In Bayesian terms, the study favors the formation of intelligence on a planet with identical conditions to Earth but does not do so with high confidence. [45] [46]

Planetary scientist Pascal Lee of the SETI Institute proposes that this fraction is very low (0.0002). He based this estimate on how long it took Earth to develop intelligent life (1 million years since Homo erectus evolved, compared to 4.6 billion years since Earth formed). [47] [48]

Fraction of the above revealing their existence via signal release into space, fc

For deliberate communication, the one example we have (the Earth) does not do much explicit communication, though there are some efforts covering only a tiny fraction of the stars that might look for human presence. (See Arecibo message, for example). There is considerable speculation why an extraterrestrial civilization might exist but choose not to communicate. However, deliberate communication is not required, and calculations indicate that current or near-future Earth-level technology might well be detectable to civilizations not too much more advanced than present day humans. [49] By this standard, the Earth is a communicating civilization.

Another question is what percentage of civilizations in the galaxy are close enough for us to detect, assuming that they send out signals. For example, existing Earth radio telescopes could only detect Earth radio transmissions from roughly a light year away. [50]

Lifetime of such a civilization wherein it communicates its signals into space, L

Michael Shermer estimated L as 420 years, based on the duration of sixty historical Earthly civilizations. [51] Using 28 civilizations more recent than the Roman Empire, he calculates a figure of 304 years for "modern" civilizations. It could also be argued from Michael Shermer's results that the fall of most of these civilizations was followed by later civilizations that carried on the technologies, so it is doubtful that they are separate civilizations in the context of the Drake equation. In the expanded version, including reappearance number, this lack of specificity in defining single civilizations does not matter for the result, since such a civilization turnover could be described as an increase in the reappearance number rather than increase in L, stating that a civilization reappears in the form of the succeeding cultures. Furthermore, since none could communicate over interstellar space, the method of comparing with historical civilizations could be regarded as invalid.

David Grinspoon has argued that once a civilization has developed enough, it might overcome all threats to its survival. It will then last for an indefinite period of time, making the value for L potentially billions of years. If this is the case, then he proposes that the Milky Way Galaxy may have been steadily accumulating advanced civilizations since it formed. [52] He proposes that the last factor L be replaced with fIC · T, where fIC is the fraction of communicating civilizations that become "immortal" (in the sense that they simply do not die out), and T representing the length of time during which this process has been going on. This has the advantage that T would be a relatively easy-to-discover number, as it would simply be some fraction of the age of the universe.

It has also been hypothesized that once a civilization has learned of a more advanced one, its longevity could increase because it can learn from the experiences of the other. [53]

The astronomer Carl Sagan speculated that all of the terms, except for the lifetime of a civilization, are relatively high and the determining factor in whether there are large or small numbers of civilizations in the universe is the civilization lifetime, or in other words, the ability of technological civilizations to avoid self-destruction. In Sagan's case, the Drake equation was a strong motivating factor for his interest in environmental issues and his efforts to warn against the dangers of nuclear warfare. Paleobiologist Olev Vinn suggests that the lifetime of most technological civilizations is brief due to inherited behavior patterns present in all intelligent organisms. These behaviors, incompatible with civilized conditions, inevitably lead to self-destruction soon after the emergence of advanced technologies. [54]

An intelligent civilization might not be organic, as some have suggested that artificial general intelligence may replace humanity. [55]

Range of results

As many skeptics have pointed out, the Drake equation can give a very wide range of values, depending on the assumptions, [56] as the values used in portions of the Drake equation are not well established. [30] [57] [58] [59] In particular, the result can be N ≪ 1, meaning we are likely alone in the galaxy, or N ≫ 1, implying there are many civilizations we might contact. One of the few points of wide agreement is that the presence of humanity implies a probability of intelligence arising of greater than zero. [60]

As an example of a low estimate, combining NASA's star formation rates, the rare Earth hypothesis value of fp · ne · fl = 10−5, [61] Mayr's view on intelligence arising, Drake's view of communication, and Shermer's estimate of lifetime:

R = 1.5–3 yr−1, [22] fp · ne · fl = 10−5, [36] fi = 10−9, [41] fc = 0.2[Drake, above], and L = 304 years [51]

gives:

N = 1.5 × 10−5 × 10−9 × 0.2 × 304 = 9.1 × 10−13

i.e., suggesting that we are probably alone in this galaxy, and possibly in the observable universe.

On the other hand, with larger values for each of the parameters above, values of N can be derived that are greater than 1. The following higher values that have been proposed for each of the parameters:

R = 1.5–3 yr−1, [22] fp = 1, [25] ne = 0.2, [62] [63] fl = 0.13, [64] fi = 1, [43] fc = 0.2[Drake, above], and L = 109 years [52]

Use of these parameters gives:

N = 3 × 1 × 0.2 × 0.13 × 1 × 0.2 × 109 = 15,600,000

Monte Carlo simulations of estimates of the Drake equation factors based on a stellar and planetary model of the Milky Way have resulted in the number of civilizations varying by a factor of 100. [65]

Possible former technological civilizations

In 2016, Adam Frank and Woodruff Sullivan modified the Drake equation to determine just how unlikely the event of a technological species arising on a given habitable planet must be, to give the result that Earth hosts the only technological species that has ever arisen, for two cases: (a) this Galaxy, and (b) the universe as a whole. By asking this different question, one removes the lifetime and simultaneous communication uncertainties. Since the numbers of habitable planets per star can today be reasonably estimated, the only remaining unknown in the Drake equation is the probability that a habitable planet ever develops a technological species over its lifetime. For Earth to have the only technological species that has ever occurred in the universe, they calculate the probability of any given habitable planet ever developing a technological species must be less than 2.5×10−24. Similarly, for Earth to have been the only case of hosting a technological species over the history of this Galaxy, the odds of a habitable zone planet ever hosting a technological species must be less than 1.7×10−11 (about 1 in 60 billion). The figure for the universe implies that it is extremely unlikely that Earth hosts the only technological species that has ever occurred. On the other hand, for this Galaxy one must think that fewer than 1 in 60 billion habitable planets develop a technological species for there not to have been at least a second case of such a species over the past history of this Galaxy. [66] [67] [68] [69] [70]

Modifications

As many observers have pointed out, the Drake equation is a very simple model that omits potentially relevant parameters, [71] and many changes and modifications to the equation have been proposed. One line of modification, for example, attempts to account for the uncertainty inherent in many of the terms. [72] Combining the estimates of the original six factors by major researchers via a Monte Carlo procedure leads to a best value for the non-longevity factors of 0.85 1/years. [73] This result differs insignificantly from the estimate of unity given both by Drake and the Cyclops report.

Others note that the Drake equation ignores many concepts that might be relevant to the odds of contacting other civilizations. For example, David Brin states: "The Drake equation merely speaks of the number of sites at which ETIs spontaneously arise. The equation says nothing directly about the contact cross-section between an ETIS and contemporary human society". [74] Because it is the contact cross-section that is of interest to the SETI community, many additional factors and modifications of the Drake equation have been proposed.

Colonization
It has been proposed to generalize the Drake equation to include additional effects of alien civilizations colonizing other star systems. Each original site expands with an expansion velocity v, and establishes additional sites that survive for a lifetime L. The result is a more complex set of 3 equations. [74]
Reappearance factor
The Drake equation may furthermore be multiplied by how many times an intelligent civilization may occur on planets where it has happened once. Even if an intelligent civilization reaches the end of its lifetime after, for example, 10,000 years, life may still prevail on the planet for billions of years, permitting the next civilization to evolve. Thus, several civilizations may come and go during the lifespan of one and the same planet. Thus, if nr is the average number of times a new civilization reappears on the same planet where a previous civilization once has appeared and ended, then the total number of civilizations on such a planet would be 1 + nr, which is the actual reappearance factor added to the equation.
The factor depends on what generally is the cause of civilization extinction. If it is generally by temporary uninhabitability, for example a nuclear winter, then nr may be relatively high. On the other hand, if it is generally by permanent uninhabitability, such as stellar evolution, then nr may be almost zero. In the case of total life extinction, a similar factor may be applicable for fl, that is, how many times life may appear on a planet where it has appeared once.
METI factor
Alexander Zaitsev said that to be in a communicative phase and emit dedicated messages are not the same. For example, humans, although being in a communicative phase, are not a communicative civilization; we do not practise such activities as the purposeful and regular transmission of interstellar messages. For this reason, he suggested introducing the METI factor (messaging to extraterrestrial intelligence) to the classical Drake equation. [75] He defined the factor as "the fraction of communicative civilizations with clear and non-paranoid planetary consciousness", or alternatively expressed, the fraction of communicative civilizations that actually engage in deliberate interstellar transmission.
The METI factor is somewhat misleading since active, purposeful transmission of messages by a civilization is not required for them to receive a broadcast sent by another that is seeking first contact. It is merely required they have capable and compatible receiver systems operational; however, this is a variable humans cannot accurately estimate.
Biogenic gases
Astronomer Sara Seager proposed a revised equation that focuses on the search for planets with biosignature gases. [76] These gases are produced by living organisms that can accumulate in a planet atmosphere to levels that can be detected with remote space telescopes. [77]
The Seager equation looks like this: [77] [a]
where:
N = the number of planets with detectable signs of life
N = the number of stars observed
FQ = the fraction of stars that are quiet
FHZ = the fraction of stars with rocky planets in the habitable zone
FO = the fraction of those planets that can be observed
FL = the fraction that have life
FS = the fraction on which life produces a detectable signature gas
Seager stresses, "We're not throwing out the Drake Equation, which is really a different topic," explaining, "Since Drake came up with the equation, we have discovered thousands of exoplanets. We as a community have had our views revolutionized as to what could possibly be out there. And now we have a real question on our hands, one that's not related to intelligent life: Can we detect any signs of life in any way in the very near future?" [78]
Carl Sagan's version of the Drake equation
American astronomer Carl Sagan made some modifications [79] in the Drake equation and presented it in the 1980 program Cosmos: A Personal Voyage . [80] The modified equation is shown below

[81] where

and

Criticism

Criticism of the Drake equation is varied. Firstly, many of the terms in the equation are largely or entirely based on conjecture. [82] [83] Star formation rates are well-known, and the incidence of planets has a sound theoretical and observational basis, but the other terms in the equation become very speculative. The uncertainties revolve around the present day understanding of the evolution of life, intelligence, and civilization, not physics. No statistical estimates are possible for some of the parameters, where only one example is known. The net result is that the equation cannot be used to draw firm conclusions of any kind, and the resulting margin of error is huge, far beyond what some consider acceptable or meaningful. [84] [85]

Others point out that the equation was formulated before our understanding of the universe had matured. Astrophysicist Ethan Siegel, said:

The Drake equation, when it was put forth, made an assumption about the Universe that we now know is untrue: It assumed that the Universe was eternal and static in time. As we learned only a few years after Frank Drake first proposed his equation, the Universe doesn’t exist in a steady state, where it’s unchanging in time, but rather has evolved from a hot, dense, energetic, and rapidly expanding state: a hot Big Bang that occurred over a finite duration in our cosmic past. [86]

One reply to such criticisms [87] is that even though the Drake equation currently involves speculation about unmeasured parameters, it was intended as a way to stimulate dialogue on these topics. Then the focus becomes how to proceed experimentally. Indeed, Drake originally formulated the equation merely as an agenda for discussion at the Green Bank conference. [88]

Fermi paradox

A civilization lasting for tens of millions of years could be able to spread throughout the galaxy, even at the slow speeds foreseeable with present-day technology. However, no confirmed signs of civilizations or intelligent life elsewhere have been found, either in this Galaxy or in the observable universe of 2  trillion galaxies. [89] [90] According to this line of thinking, the tendency to fill (or at least explore) all available territory seems to be a universal trait of living things, so the Earth should have already been colonized, or at least visited, but no evidence of this exists. Hence Fermi's question "Where is everybody?". [91] [92]

A large number of explanations have been proposed to explain this lack of contact; a book published in 2015 elaborated on 75 different explanations. [93] In terms of the Drake Equation, the explanations can be divided into three classes:

These lines of reasoning lead to the Great Filter hypothesis, [94] which states that since there are no observed extraterrestrial civilizations despite the vast number of stars, at least one step in the process must be acting as a filter to reduce the final value. According to this view, either it is very difficult for intelligent life to arise, or the lifetime of technologically advanced civilizations, or the period of time they reveal their existence must be relatively short.

An analysis by Anders Sandberg, Eric Drexler and Toby Ord suggests "a substantial ex ante (predicted) probability of there being no other intelligent life in our observable universe". [95]

Commemorative plate on Europa Clipper Europa Clipper commemorative plate.jpg
Commemorative plate on Europa Clipper

The equation was cited by Gene Roddenberry as supporting the multiplicity of inhabited planets shown on Star Trek , the television series he created. However, Roddenberry did not have the equation with him, and he was forced to "invent" it for his original proposal. [96] The invented equation created by Roddenberry is:

Regarding Roddenberry's fictional version of the equation, Drake himself commented that a number raised to the first power is just the number itself. [97]

A commemorative plate on NASA's Europa Clipper mission, planned for launch in October 2024, features a poem by the U.S. Poet Laureate Ada Limón, waveforms of the word 'water' in 103 languages, a schematic of the water hole, the Drake equation, and a portrait of planetary scientist Ron Greeley on it. [98]

The track Abiogenesis on the Carbon Based Lifeforms album World of Sleepers features the Drake equation in a spoken voice-over.

See also

Notes

  1. The rendering of the equation here is slightly modified for clarity of presentation from the rendering in the cited source. [77]

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

Extraterrestrial life, or alien life, is life that originates from another world rather than on Earth. No extraterrestrial life has yet been scientifically conclusively detected. Such life might range from simple forms such as prokaryotes to intelligent beings, possibly bringing forth civilizations that might be far more, or far less, advanced than humans. The Drake equation speculates about the existence of sapient life elsewhere in the universe. The science of extraterrestrial life is known as astrobiology.

<span class="mw-page-title-main">Fermi paradox</span> Problem of the lack of evidence for alien life despite its apparent likelihood

The Fermi paradox is the discrepancy between the lack of conclusive evidence of advanced extraterrestrial life and the apparently high likelihood of its existence. Those affirming the paradox generally conclude that if the conditions required for life to arise from non-living matter are as permissive as the available evidence on Earth indicates, then extraterrestrial life would be sufficiently common such that it would be implausible for it not to have been detected yet.

The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life. Methods include monitoring electromagnetic radiation for signs of transmissions from civilizations on other planets, optical observation, and the search for physical artifacts. Attempts to message extraterrestrial intelligences have also been made.

<span class="mw-page-title-main">Frank Drake</span> American astronomer and astrophysicist (1930–2022)

Frank Donald Drake was an American astrophysicist and astrobiologist.

<span class="mw-page-title-main">Kardashev scale</span> Measure of a civilizations evolution

The Kardashev scale is a method of measuring a civilization's level of technological advancement based on the amount of energy it is capable of harnessing and using. The measure was proposed by Soviet astronomer Nikolai Kardashev (1932–2019) in 1964 and was named after him.

Extraterrestrial intelligence (ETI) refers to hypothetical intelligent extraterrestrial life. No such life has ever been verifiably observed to exist. The question of whether other inhabited worlds might exist has been debated since ancient times. The modern form of the concept emerged when the Copernican Revolution demonstrated that the Earth was a planet revolving around the Sun, and other planets were, conversely, other worlds. The question of whether other inhabited planets or moons exist was a natural consequence of this new understanding. It has become one of the most speculative questions in science and is a central theme of science fiction and popular culture.

The mediocrity principle is the philosophical notion that "if an item is drawn at random from one of several sets or categories, it's more likely to come from the most numerous category than from any one of the less numerous categories". The principle has been taken to suggest that there is nothing very unusual about the evolution of the Solar System, Earth's history, the evolution of biological complexity, human evolution, or any one nation. It is a heuristic in the vein of the Copernican principle, and is sometimes used as a philosophical statement about the place of humanity. The idea is to assume mediocrity, rather than starting with the assumption that a phenomenon is special, privileged, exceptional, or even superior.

<span class="mw-page-title-main">Rare Earth hypothesis</span> Hypothesis that complex extraterrestrial life is improbable and extremely rare

In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity, such as sexually reproducing, multicellular organisms on Earth, and subsequently human intelligence, required an improbable combination of astrophysical and geological events and circumstances. According to the hypothesis, complex extraterrestrial life is an improbable phenomenon and likely to be rare throughout the universe as a whole. The term "Rare Earth" originates from Rare Earth: Why Complex Life Is Uncommon in the Universe (2000), a book by Peter Ward, a geologist and paleontologist, and Donald E. Brownlee, an astronomer and astrobiologist, both faculty members at the University of Washington.

<span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

The zoo hypothesis speculates on the assumed behavior and existence of technologically advanced extraterrestrial life and the reasons they refrain from contacting Earth. It is one of many theoretical explanations for the Fermi paradox. The hypothesis states that extraterrestrial life intentionally avoids communication with Earth to allow for natural evolution and sociocultural development, and avoiding interplanetary contamination, similar to people observing animals at a zoo. The hypothesis seeks to explain the apparent absence of extraterrestrial life despite its generally accepted plausibility and hence the reasonable expectation of its existence.

The Great Filter is the idea that, in the development of life from the earliest stages of abiogenesis to reaching the highest levels of development on the Kardashev scale, there is a barrier to development that makes detectable extraterrestrial life exceedingly rare. The Great Filter is one possible resolution of the Fermi paradox.

<span class="mw-page-title-main">Earth analog</span> Planet with environment similar to Earths

An Earth analog, also called an Earth twin or second Earth, is a planet or moon with environmental conditions similar to those found on Earth. The term Earth-like planet is also used, but this term may refer to any terrestrial planet.

The cultural impact of extraterrestrial contact is the corpus of changes to terrestrial science, technology, religion, politics, and ecosystems resulting from contact with an extraterrestrial civilization. This concept is closely related to the search for extraterrestrial intelligence (SETI), which attempts to locate intelligent life as opposed to analyzing the implications of contact with that life.

<i>The Eerie Silence</i> 2010 book by Paul Davies

The Eerie Silence: Renewing Our Search for Alien Intelligence is a 2010 popular science book by Paul Davies, chair of the SETI: Post-Detection Science and Technology Taskgroup of the International Academy of Astronautics. The Eerie Silence explores the possibilities of intelligent extraterrestrial life, and its potential consequences.

<span class="mw-page-title-main">Galactic habitable zone</span> Region of a galaxy in which life might most likely develop

In astrobiology and planetary astrophysics, the galactic habitable zone is the region of a galaxy in which life is most likely to develop. The concept of a galactic habitable zone analyzes various factors, such as metallicity and the rate and density of major catastrophes such as supernovae, and uses these to calculate which regions of a galaxy are more likely to form terrestrial planets, initially develop simple life, and provide a suitable environment for this life to evolve and advance. According to research published in August 2015, very large galaxies may favor the birth and development of habitable planets more than smaller galaxies such as the Milky Way. In the case of the Milky Way, its galactic habitable zone is commonly believed to be an annulus with an outer radius of about 10 kiloparsecs (33,000 ly) and an inner radius close to the Galactic Center.

<span class="mw-page-title-main">Breakthrough Listen</span> Initiative to search for intelligent extraterrestrial life

Breakthrough Listen is a project to search for intelligent extraterrestrial communications in the Universe. With $100 million in funding and thousands of hours of dedicated telescope time on state-of-the-art facilities, it is the most comprehensive search for alien communications to date. The project began in January 2016, and is expected to continue for 10 years. It is a component of Yuri Milner's Breakthrough Initiatives program. The science program for Breakthrough Listen is based at Berkeley SETI Research Center, located in the Astronomy Department at the University of California, Berkeley.

<span class="mw-page-title-main">Alberto Caballero (astronomer)</span> Spanish astronomer (born c. 1991)

Alberto Caballero is a Spanish astronomer and science communicator. He is known for having identified a Sun-like star in the sky region where the Wow! signal came from as one of the possible sources of the radio signal. Caballero is also known for founding and coordinating the Habitable Exoplanet Hunting Project, an international effort consisting of more than 30 observatories searching for nearby potentially habitable exoplanets. Data is collected 24/7 from specific stars by observatories located both in the Northern and Southern hemispheres, and an initial list of exoplanet candidates was made public in 2020.

<span class="mw-page-title-main">Outline of extraterrestrial life</span> Overview of and topical guide to extraterrestrial life

The following outline is provided as an overview of and topical guide to extraterrestrial life:

The Hart–Tipler conjecture is the idea that an absence of detectable Von Neumann probes is contrapositive evidence that no intelligent life exists outside of the Solar System. This idea was first proposed in opposition to the Drake equation in a 1975 paper by Michael H. Hart titled "Explanation for the Absence of Extraterrestrials on Earth". Assuming that the probes traveled at 1/10 the speed of light and that no time was lost in building new ships upon arriving at the destination, Hart surmised that a wave of Von Neumann probes could cross the galaxy in approximately 650,000 years, a comparatively minimal span of time relative to the estimated age of the universe at 13.7 billion years. Hart’s argument was extended by cosmologist Frank Tipler in his 1981 paper entitled "Extraterrestrial intelligent beings do not exist".

References

  1. 1 2 3 Physics Today 14 (4), 40–46 (1961). Drake, F. D. (April 1961). "Project Ozma". pubs.aip.org. American Institute of Physics. Retrieved 27 April 2023. The question of the existence of intelligent life elsewhere in space has long fascinated people, but, until recently, has been properly left to the science‐fiction writers.
  2. 1 2 3 4 Burchell, M. J. (2006). "W(h)ither the Drake equation?". International Journal of Astrobiology. 5 (3): 243–250. Bibcode:2006IJAsB...5..243B. doi:10.1017/S1473550406003107. S2CID   121060763.
  3. Glade, N.; Ballet, P.; Bastien, O. (2012). "A stochastic process approach of the drake equation parameters". International Journal of Astrobiology . 11 (2): 103–108. arXiv: 1112.1506 . Bibcode:2012IJAsB..11..103G. doi:10.1017/S1473550411000413. S2CID   119250730.
  4. 1 2 3 "Chapter 3 – Philosophy: "Solving the Drake Equation". Ask Dr. SETI. SETI League. December 2002. Retrieved 10 April 2013.
  5. Drake, N. (30 June 2014). "How my Dad's Equation Sparked the Search for Extraterrestrial Intelligence". National Geographic . Archived from the original on 5 July 2014. Retrieved 2 October 2016.
  6. 1 2 Aguirre, L. (1 July 2008). "The Drake Equation". Nova ScienceNow . PBS . Retrieved 7 March 2010.
  7. "What do we need to know about to discover life in space?". SETI Institute . Retrieved 16 April 2013.
  8. Drake, Frank D. (1 January 1965). The Radio Search for Intelligent Extraterrestrial Life. Bibcode:1965cae..book..323D.
  9. jtw13 (31 July 2019). "Freeman Dyson's First Law of SETI Investigations". AstroWright. Retrieved 2 August 2024.{{cite web}}: CS1 maint: numeric names: authors list (link)
  10. Cocconi, G.; Morisson, P. (1959). "Searching for Interstellar Communications" (PDF). Nature . 184 (4690): 844–846. Bibcode:1959Natur.184..844C. doi:10.1038/184844a0. S2CID   4220318. Archived (PDF) from the original on 28 July 2011. Retrieved 10 April 2013.
  11. 1 2 Schilling, G.; MacRobert, A. M. (2013). "The Chance of Finding Aliens". Sky & Telescope . Archived from the original on 14 February 2013. Retrieved 10 April 2013.
  12. newspaper, staff (8 November 1959). "Life On Other Planets?". Sydney Morning Herald . Retrieved 2 October 2015.
  13. "The Drake Equation Revisited: Part I". Astrobiology Magazine . 29 September 2003. Archived from the original on 25 February 2021. Retrieved 20 May 2017.{{cite web}}: CS1 maint: unfit URL (link)
  14. Zaun, H. (1 November 2011). "Es war wie eine 180-Grad-Wende von diesem peinlichen Geheimnis!" [It was like a 180 degree turn from this embarrassing secret]. Telepolis (in German). Retrieved 13 August 2013.
  15. "Drake Equation Plaque" . Retrieved 13 August 2013.
  16. Darling, D. J. "Green Bank conference (1961)". The Encyclopedia of Science . Archived from the original on 21 February 2024. Retrieved 13 August 2013.
  17. Jones, D. S. (26 September 2001). "Beyond the Drake Equation" . Retrieved 17 April 2013.
  18. "The Search For Life : The Drake Equation 2010 – Part 1". BBC Four. 2010. Retrieved 17 April 2013.
  19. SETI: A celebration of the first 50 years. Keith Cooper. Astronomy Now. 2000
  20. Drake, F.; Sobel, D. (1992). Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence. Delta. pp. 55–62. ISBN   0-385-31122-2.
  21. Glade, N.; Ballet, P.; Bastien, O. (2012). "A stochastic process approach of the drake equation parameters". International Journal of Astrobiology . 11 (2): 103–108. arXiv: 1112.1506 . Bibcode:2012IJAsB..11..103G. doi:10.1017/S1473550411000413. S2CID   119250730. Note: This reference has a table of 1961 values, claimed to be taken from Drake & Sobel, but these differ from the book.
  22. 1 2 3 Robitaille, Thomas P.; Barbara A. Whitney (2010). "The present-day star formation rate of the Milky Way determined from Spitzer-detected young stellar objects". The Astrophysical Journal Letters. 710 (1): L11. arXiv: 1001.3672 . Bibcode:2010ApJ...710L..11R. doi:10.1088/2041-8205/710/1/L11. S2CID   118703635.
  23. Wanjek, C. (2015). The Drake Equation. Cambridge University Press. ISBN   9781107073654 . Retrieved 9 September 2016.
  24. Kennicutt, Robert C.; Evans, Neal J. (22 September 2012). "Star Formation in the Milky Way and Nearby Galaxies". Annual Review of Astronomy and Astrophysics. 50 (1): 531–608. arXiv: 1204.3552 . Bibcode:2012ARA&A..50..531K. doi:10.1146/annurev-astro-081811-125610. S2CID   118667387.
  25. 1 2 Palmer, J. (11 January 2012). "Exoplanets are around every star, study suggests". BBC . Retrieved 12 January 2012.
  26. Cassan, A.; et al. (11 January 2012). "One or more bound planets per Milky Way star from microlensing observations". Nature . 481 (7380): 167–169. arXiv: 1202.0903 . Bibcode:2012Natur.481..167C. doi:10.1038/nature10684. PMID   22237108. S2CID   2614136.
  27. Overbye, Dennis (4 November 2013). "Far-Off Planets Like the Earth Dot the Galaxy". The New York Times . Archived from the original on 1 January 2022. Retrieved 5 November 2013.
  28. Petigura, Eric A.; Howard, Andrew W.; Marcy, Geoffrey W. (31 October 2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences of the United States of America . 110 (48): 19273–19278. arXiv: 1311.6806 . Bibcode:2013PNAS..11019273P. doi: 10.1073/pnas.1319909110 . PMC   3845182 . PMID   24191033.
  29. Khan, Amina (4 November 2013). "Milky Way may host billions of Earth-size planets". Los Angeles Times . Retrieved 5 November 2013.
  30. 1 2 Schilling, Govert (November 2011). "The Chance of Finding Aliens: Reevaluating the Drake Equation". astro-tom.com.
  31. Trimble, V. (1997). "Origin of the biologically important elements". Origins of Life and Evolution of the Biosphere . 27 (1–3): 3–21. Bibcode:1997OLEB...27....3T. doi:10.1023/A:1006561811750. PMID   9150565. S2CID   7612499.
  32. Lineweaver, C. H.; Fenner, Y.; Gibson, B. K. (2004). "The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way". Science . 303 (5654): 59–62. arXiv: astro-ph/0401024 . Bibcode:2004Sci...303...59L. doi:10.1126/science.1092322. PMID   14704421. S2CID   18140737.
  33. Dressing, C. D.; Charbonneau, D. (2013). "The Occurrence Rate of Small Planets around Small Stars". The Astrophysical Journal . 767 (1): 95. arXiv: 1302.1647 . Bibcode:2013ApJ...767...95D. doi:10.1088/0004-637X/767/1/95. S2CID   29441006.
  34. "Red Dwarf Stars Could Leave Habitable Earth-Like Planets Vulnerable to Radiation". SciTech Daily. 2 July 2013. Retrieved 22 September 2015.
  35. Heller, René; Barnes, Rory (29 April 2014). "Constraints on the Habitability of Extrasolar Moons". Proceedings of the International Astronomical Union. 8 (S293): 159–164. arXiv: 1210.5172 . Bibcode:2014IAUS..293..159H. doi:10.1017/S1743921313012738. S2CID   92988047.
  36. 1 2 Ward, Peter D.; Brownlee, Donald (2000). Rare Earth: Why Complex Life is Uncommon in the Universe. Copernicus Books (Springer Verlag). ISBN   0-387-98701-0.
  37. Davies, P. (2007). "Are Aliens Among Us?". Scientific American . 297 (6): 62–69. Bibcode:2007SciAm.297f..62D. doi:10.1038/scientificamerican1207-62.
  38. Crick, F. H. C.; Orgel, L. E. (1973). "Directed Panspermia" (PDF). Icarus . 19 (3): 341–346. Bibcode:1973Icar...19..341C. doi:10.1016/0019-1035(73)90110-3. Archived (PDF) from the original on 29 October 2011.
  39. Westby, Tom; Conselice, Christopher J. (15 June 2020). "The Astrobiological Copernican Weak and Strong Limits for Intelligent Life". The Astrophysical Journal. 896 (1): 58. arXiv: 2004.03968 . Bibcode:2020ApJ...896...58W. doi: 10.3847/1538-4357/ab8225 . S2CID   215415788.
  40. Davis, Nicola (15 June 2020). "Scientists say most likely number of contactable alien civilisations is 36". The Guardian. Retrieved 19 June 2020.
  41. 1 2 "Ernst Mayr on SETI". The Planetary Society. Archived from the original on 6 December 2010.
  42. Rare Earth, p. xviii.: "We believe that life in the form of microbes or their equivalents is very common in the universe, perhaps more common than even Drake or Sagan envisioned. However, complex life—animals and higher plants—is likely to be far more rare than commonly assumed."
  43. 1 2 Campbell, A. (13 March 2005). "Review of Life's Solution by Simon Conway Morris". Archived from the original on 16 July 2011.
  44. Bonner, J. T. (1988). The evolution of complexity by means of natural selection . Princeton University Press. ISBN   0-691-08494-7.
  45. Kipping, David (18 May 2020). "An objective Bayesian analysis of life's early start and our late arrival". Proceedings of the National Academy of Sciences . 117 (22): 11995–12003. arXiv: 2005.09008 . Bibcode:2020PNAS..11711995K. doi: 10.1073/pnas.1921655117 . PMC   7275750 . PMID   32424083.
  46. Columbia University. "New study estimates the odds of life and intelligence emerging beyond our planet". Phys.org. Retrieved 23 May 2020.
  47. Lee, Pascal (24 October 2020). "N~1: Alone in the Milky Way, Mt Tam". YouTube . Archived from the original on 11 December 2021.
  48. Lee, Pascal (6 March 2021). "N~1: Alone in the Milky Way – Kalamazoo Astronomical Society". YouTube . Archived from the original on 15 March 2021.
  49. Forgan, D.; Elvis, M. (2011). "Extrasolar Asteroid Mining as Forensic Evidence for Extraterrestrial Intelligence". International Journal of Astrobiology . 10 (4): 307–313. arXiv: 1103.5369 . Bibcode:2011IJAsB..10..307F. doi:10.1017/S1473550411000127. S2CID   119111392.
  50. Tarter, Jill C. (September 2001). "The Search for Extraterrestrial Intelligence (SETI)". Annual Review of Astronomy and Astrophysics. 39: 511–548. Bibcode:2001ARA&A..39..511T. doi:10.1146/annurev.astro.39.1.511. S2CID   261531924.
  51. 1 2 Shermer, M. (August 2002). "Why ET Hasn't Called". Scientific American . 287 (2): 21. Bibcode:2002SciAm.287b..33S. doi:10.1038/scientificamerican0802-33.
  52. 1 2 Grinspoon, D. (2004). Lonely Planets.
  53. Goldsmith, D.; Owen, T. (1992). The Search for Life in the Universe (2nd ed.). Addison-Wesley. p. 415. ISBN   1-891389-16-5.
  54. Vinn, O. (2024). "Potential incompatibility of inherited behavior patterns with civilization: Implications for Fermi paradox". Science Progress. 107 (3): 1–6. doi: 10.1177/00368504241272491 . PMC   11307330 . PMID   39105260.
  55. Sulleyman, Aatif (2 November 2017). "Stephen Hawking warns artificial intelligence 'may replace humans altogether'". independent.co.uk.
  56. "The value of N remains highly uncertain. Even if we had a perfect knowledge of the first two terms in the equation, there are still five remaining terms, each of which could be uncertain by factors of 1,000." from Wilson, TL (2001). "The search for extraterrestrial intelligence". Nature. 409 (6823). Nature Publishing Group: 1110–1114. Bibcode:2001Natur.409.1110W. doi:10.1038/35059235. PMID   11234025. S2CID   205014501., or more informally, "The Drake Equation can have any value from "billions and billions" to zero", Michael Crichton, as quoted in Douglas A. Vakoch; et al. (2015). The Drake Equation: Estimating the prevalence of extraterrestrial life through the ages. Cambridge University Press. ISBN   978-1-10-707365-4., p. 13
  57. "The Drake Equation". psu.edu.
  58. Devin Powell, Astrobiology Magazine (4 September 2013). "The Drake Equation Revisited: Interview with Planet Hunter Sara Seager". Space.com.
  59. Govert Schilling; Alan M. MacRobert (3 June 2009). "The Chance of Finding Aliens". Sky & Telescope.
  60. [ better source needed ]Dean, T. (10 August 2009). "A review of the Drake Equation". Cosmos Magazine . Archived from the original on 3 June 2013. Retrieved 16 April 2013.
  61. Rare Earth, page 270: "When we take into account factors such as the abundance of planets and the location and lifetime of the habitable zone, the Drake Equation suggests that only between 1% and 0.001% of all stars might have planets with habitats similar to Earth. [...] If microbial life forms readily, then millions to hundreds of millions of planets in the galaxy have the potential for developing advanced life. (We expect that a much higher number will have microbial life.)"
  62. von Bloh, W.; Bounama, C.; Cuntz, M.; Franck, S. (2007). "The habitability of super-Earths in Gliese 581". Astronomy & Astrophysics . 476 (3): 1365–1371. arXiv: 0705.3758 . Bibcode:2007A&A...476.1365V. doi:10.1051/0004-6361:20077939. S2CID   14475537.
  63. Selsis, Franck; Kasting, James F.; Levrard, Benjamin; Paillet, Jimmy; Ribas, Ignasi; Delfosse, Xavier (2007). "Habitable planets around the star Gl 581?". Astronomy and Astrophysics . 476 (3): 1373–1387. arXiv: 0710.5294 . Bibcode:2007A&A...476.1373S. doi:10.1051/0004-6361:20078091. S2CID   11492499.
  64. Lineweaver, C. H.; Davis, T. M. (2002). "Does the rapid appearance of life on Earth suggest that life is common in the universe?". Astrobiology . 2 (3): 293–304. arXiv: astro-ph/0205014 . Bibcode:2002AsBio...2..293L. doi:10.1089/153110702762027871. PMID   12530239. S2CID   431699.
  65. Forgan, D. (2009). "A numerical testbed for hypotheses of extraterrestrial life and intelligence". International Journal of Astrobiology . 8 (2): 121–131. arXiv: 0810.2222 . Bibcode:2009IJAsB...8..121F. doi:10.1017/S1473550408004321. S2CID   17469638.
  66. "Are we alone? Setting some limits to our uniqueness". phys.org. 28 April 2016.
  67. "Are We Alone? Galactic Civilization Challenge". PBS Space Time. 5 October 2016. PBS Digital Studios.
  68. Frank, Adam (10 June 2016). "Yes, There Have Been Aliens". The New York Times.
  69. Frank, Adam; Sullivan III, W. T. (22 April 2016). "A New Empirical Constraint on the Prevalence of Technological Species in the Universe". Astrobiology. 16 (5) (published 13 May 2016): 359–362. arXiv: 1510.08837 . Bibcode:2016AsBio..16..359F. doi:10.1089/ast.2015.1418. PMID   27105054.
  70. Bioverse: How the Cellular World Contains the Secrets to Life's Biggest Questions William B Miller Jr. ISBN   9781633887992 p50
  71. Hetesi, Z.; Regaly, Z. (2006). "A new interpretation of Drake-equation" (PDF). Journal of the British Interplanetary Society . 59: 11–14. Bibcode:2006JBIS...59...11H. Archived from the original (PDF) on 5 February 2009.
  72. Maccone, C. (2010). "The Statistical Drake Equation". Acta Astronautica . 67 (11–12): 1366–1383. Bibcode:2010AcAau..67.1366M. doi:10.1016/j.actaastro.2010.05.003. S2CID   121239391.
  73. Golden, Leslie M. (1 August 2021). "A joint mind consideration of the Drake equation in the search for extraterrestrial intelligence". Acta Astronautica. 185: 333–336. Bibcode:2021AcAau.185..333G. doi:10.1016/j.actaastro.2021.03.020. ISSN   0094-5765. S2CID   233663920.
  74. 1 2 Brin, G. D. (1983). "The Great Silence – The Controversy Concerning Extraterrestrial Intelligent Life". Quarterly Journal of the Royal Astronomical Society . 24 (3): 283–309. Bibcode:1983QJRAS..24..283B.
  75. Zaitsev, A. (May 2005). "The Drake Equation: Adding a METI Factor". SETI League . Retrieved 20 April 2013.
  76. Jones, Chris (7 December 2016). "'The World Sees Me as the One Who Will Find Another Earth' – The star-crossed life of Sara Seager, an astrophysicist obsessed with discovering distant planets". The New York Times . Retrieved 8 December 2016.
  77. 1 2 3 Devin Powell (4 September 2013). "The Drake Equation Revisited: Interview with Planet Hunter Sara Seager". Space.com. Retrieved 6 October 2023.
  78. "A New Equation Reveals Our Exact Odds of Finding Alien Life". io9. 21 June 2013.
  79. "The Drake Equation". phys.libretexts.org. 13 August 2014. Retrieved 4 February 2024.
  80. "Carl Sagan - Cosmos - Drake Equation". YouTube . 24 March 2009.
  81. "Carl Sagan - Cosmos - Drake Equation". YouTube . 24 March 2009. Retrieved 4 February 2024.
  82. Hartsfield, Tom (11 March 2015). "Why the Drake Equation Is Useless | RealClearScience". www.realclearscience.com. Retrieved 29 April 2024.
  83. "The Drake Equation: Could It Be Wrong?". SETI Institute. Retrieved 29 April 2024.
  84. Dvorsky, G. (31 May 2007). "The Drake Equation is obsolete". Sentient Developments. Retrieved 21 August 2013.
  85. Sutter, Paul (27 December 2018). "Alien Hunters, Stop Using the Drake Equation". Space.com. Retrieved 18 February 2019.
  86. "The unsurprising non-detection of intelligent aliens". Big Think. 23 April 2024. Retrieved 29 April 2024.
  87. Tarter, Jill C. (May–June 2006). "The Cosmic Haystack Is Large". Skeptical Inquirer . 30 (3). Retrieved 21 August 2013.
  88. Alexander, A. "The Search for Extraterrestrial Intelligence: A Short History – Part 7: The Birth of the Drake Equation". The Planetary Society. Archived from the original on 6 March 2005.
  89. Christopher J. Conselice; et al. (2016). "The Evolution of Galaxy Number Density at z < 8 and its Implications". The Astrophysical Journal. 830 (2): 83. arXiv: 1607.03909 . Bibcode:2016ApJ...830...83C. doi: 10.3847/0004-637X/830/2/83 . S2CID   17424588.
  90. Fountain, Henry (17 October 2016). "Two Trillion Galaxies, at the Very Least". The New York Times . Archived from the original on 1 January 2022. Retrieved 17 October 2016.
  91. Jones, E. M. (1 March 1985). "Where is everybody?" An account of Fermi's question (PDF) (Report). Los Alamos National Laboratory. Bibcode:1985STIN...8530988J. doi: 10.2172/5746675 . OSTI   5746675 . Archived (PDF) from the original on 12 October 2007. Retrieved 21 August 2013.
  92. Krauthammer, C. (29 December 2011). "Are we alone in the Universe?". The Washington Post . Retrieved 21 August 2013.
  93. Webb, S. (2015). If the Universe Is Teeming with Aliens ... WHERE IS EVERYBODY?: Seventy-Five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life. Springer International Publishing. ISBN   978-3319132358.
  94. Hanson, R. (15 September 1998). "The Great Filter – Are We Almost Past It?" . Retrieved 21 August 2013.
  95. Sandberg, Anders; Drexler, Eric; Ord, Toby (6 June 2018). "Dissolving the Fermi Paradox". arXiv: 1806.02404 [physics.pop-ph].
  96. The Making of Star Trek by Stephen E. Whitfield and Gene Roddenberry, New York: Ballantine Books, 1968
  97. Okuda, Mike and Denise Okuda, with Debbie Mirek (1999). The Star Trek Encyclopedia . Pocket Books. p. 122. ISBN   0-671-53609-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  98. "NASA Unveils Design for Message Heading to Jupiter's Moon Europa". NASA Jet Propulsion Laboratory (JPL). Retrieved 11 March 2024.PD-icon.svg This article incorporates text from this source, which is in the public domain .

Further reading