Explorer of Enceladus and Titan

Last updated
Artist's impression of possible hydrothermal activity on Enceladus PIA19656-SaturnMoon-Enceladus-Ocean-ArtConcept-20150915.jpg
Artist's impression of possible hydrothermal activity on Enceladus
False-color, medium-resolution Cassini synthetic aperture radar mosaic of Titan's north polar region, showing hydrocarbon seas, lakes and tributary networks. Blue coloring indicates low radar reflectivity areas, caused by bodies of liquid ethane, methane and dissolved nitrogen. PIA17655 crop Titan north polar seas and lakes.jpg
False-color, medium-resolution Cassini synthetic aperture radar mosaic of Titan's north polar region, showing hydrocarbon seas, lakes and tributary networks. Blue coloring indicates low radar reflectivity areas, caused by bodies of liquid ethane, methane and dissolved nitrogen.

Explorer of Enceladus and Titan (E2T) is a space mission concept that would investigate the evolution and habitability of the Saturnian satellites Enceladus and Titan and is proposed by the European Space Agency in collaboration with NASA. [2]

Contents

The proposed mission would address key scientific questions regarding extraterrestrial habitability, abiotic/prebiotic chemistry and emergence of life, which are among the highest priorities of ESA's Cosmic Vision program.

Overview

The Explorer of Enceladus and Titan (E2T) orbiter was first proposed in 2017 as a medium-class mission led by the European Space Agency in collaboration with NASA in response to ESA's M5 Cosmic Vision programme. [3]

Both Enceladus and Titan harbour subsurface oceans that are prime environments in which to investigate the conditions for the emergence of life and the habitability potential of ocean worlds as well as the origin and evolution of unique complex planetary systems. [2]

Goals

The E2T mission has three scientific goals: [4]

These goals would be accomplished by measuring the nature, abundance and isotopic properties of solid- and vapor-phase species in Enceladus' plume and Titan's upper atmosphere.

Conceptual payload

The payload would provide in-situ sampling, high-resolution imaging and radio science measurements from multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. The two main instruments proposed are the Ion and Neutral Gas Mass Spectrometer (INMS) and the Enceladus Icy Jet Analyzer (ENIJA); these high resolution mass spectrometers would provide the data needed to discern the subtle details of the aqueous environment of Enceladus from plume sampling and of the complex pre-biotic chemistry occurring in Titan's atmosphere. [2]

The Titan Imaging and Geology, Enceladus Reconnaissance (TIGER) mid-wave infrared camera would map thermal emission from the plumes and Enceladus' tiger stripes at meter scales and investigate Titan's geomorphology at 50–100 m resolution. [4]

The Radio Science Experiment (RSE) measurements would provide constraints on the ice shell structure and the properties of the internal oceans of Enceladus and Titan. [2]

Propulsion

The spacecraft concept calls for using an ion drive propulsion, proven to be extremely efficient and reliable. An ion thruster —or ion drive— is a form of electric propulsion that creates thrust by accelerating ions with electricity. The required electricity is generated by solar panels mounted on the spacecraft.

See also

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Titan (moon)</span> Largest moon of Saturn and second-largest moon in Solar System

Titan is the largest moon of Saturn and the second-largest in the Solar System, larger than any of the dwarf planets of the Solar System. It is the only moon known to have a dense atmosphere, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found.

<span class="mw-page-title-main">Enceladus</span> Natural satellite orbiting Saturn

Enceladus is the sixth-largest moon of Saturn. It is about 500 kilometers in diameter, about a tenth of that of Saturn's largest moon, Titan. It is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C, far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

A biosignature is any substance – such as an element, isotope, molecule, or phenomenon – that provides scientific evidence of past or present life on a planet. Measurable attributes of life include its complex physical or chemical structures, its use of free energy, and the production of biomass and wastes.

The New Frontiers program is a series of space exploration missions being conducted by NASA with the purpose of furthering the understanding of the Solar System. The program selects medium-class missions which can provide high science returns.

<span class="mw-page-title-main">Exploration of Saturn</span> Overview of the exploration of Saturn

The exploration of Saturn has been solely performed by crewless probes. Three missions were flybys, which formed an extended foundation of knowledge about the system. The Cassini–Huygens spacecraft, launched in 1997, was in orbit from 2004 to 2017.

Jonathan I. Lunine is an American planetary scientist and physicist. Lunine teaches at Cornell University, where he is the David C. Duncan Professor in the Physical Sciences and chair of the Department of Astronomy. Having published more than 380 research papers, Lunine is at the forefront of research into planet formation, evolution, and habitability. His work includes analysis of brown dwarfs, gas giants, and planetary satellites. Within the Solar System, bodies with potential organic chemistry and prebiotic conditions, particularly Saturn's moon Titan, have been the focus of Lunine's research.

<span class="mw-page-title-main">Atmosphere of Titan</span> Thick atmospheric layers of Saturns moon Titan

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. It is the only thick atmosphere of a natural satellite in the Solar System. Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

<span class="mw-page-title-main">Enceladus Life Finder</span> Proposed NASA mission to a moon of Saturn

Enceladus Life Finder (ELF) is a proposed astrobiology mission concept for a NASA spacecraft intended to assess the habitability of the internal aquatic ocean of Enceladus, which is Saturn's sixth-largest moon of at least 146 total moons, and seemingly similar in chemical makeup to comets. The spaceprobe would orbit Saturn and fly through Enceladus's geyser-like plumes multiple times. It would be powered by energy supplied from solar panels on the spacecraft.

Journey to Enceladus and Titan (JET) is an astrobiology mission concept to assess the habitability potential of Enceladus and Titan, moons of Saturn.

Life Investigation For Enceladus (LIFE) was a proposed astrobiology mission concept that would capture icy particles from Saturn's moon Enceladus and return them to Earth, where they could be studied in detail for signs of life such as biomolecules.

Enceladus Explorer (EnEx) is a planned interplanetary orbiter and lander mission equipped with a subsurface maneuverable ice melting probe suitable to assess the existence of life on Saturn's moon Enceladus.

THEO is a feasibility study for a New Frontiers class orbiter mission to Enceladus that would directly sample its south pole water plumes in order to study its internal habitability and to search for biosignatures. Specifically, it would take advantage of the direct sampling opportunities of a subsurface ocean.

<span class="mw-page-title-main">Oceanus (Titan orbiter)</span>

Oceanus is a NASA/JPL orbiter mission concept proposed in 2017 for the New Frontiers mission #4, but it was not selected for development. If selected at some future opportunity, Oceanus would travel to Saturn's moon Titan to assess its habitability. Studying Titan would help understand the early Earth and exoplanets which orbit other stars. The mission is named after Oceanus, the Greek god of oceans.

<span class="mw-page-title-main">Enceladus Life Signatures and Habitability</span> Astrobiology concept mission

Enceladus Life Signatures and Habitability (ELSAH) is an astrobiology concept mission proposed in 2017 to NASA's New Frontiers program to send a spacecraft to Enceladus to search for biosignatures and assess its habitability. The Principal Investigator is Christopher P. McKay, an astrobiologist at NASA Ames Research Center, and the managing NASA center is Goddard Space Flight Center. No details of the mission have been made public, but observers speculate that it would be a plume-sampling orbiter mission.

<span class="mw-page-title-main">Ocean Worlds Exploration Program</span> NASA program for the exploration of water worlds in the Solar System

The Ocean Worlds Exploration Program (OWEP) is a NASA program to explore ocean worlds in the outer Solar System that could possess subsurface oceans to assess their habitability and to seek biosignatures of simple extraterrestrial life.

The Enceladus Icy Jet Analyzer (ENIJA) is a time-of-flight mass spectrometer developed to search for prebiotic molecules like amino acids and biosignatures in the plumes of Saturn's moon Enceladus.

<span class="mw-page-title-main">Surface Dust Analyser</span>

The SUrface Dust Analyser (SUDA) is a time-of-flight mass spectrometer of reflectron-type that employs impact ionization and is optimised for a high mass resolution. The instrument was selected in May 2015 to fly on board the Europa Clipper mission, that is planned for 2025 to Jupiter's moon Europa.

<span class="mw-page-title-main">Cosmic Dust Analyzer</span> Space instrument on Cassini/Huygen

The Cosmic Dust Analyzer (CDA) on the Cassini mission is a large-area multi-sensor dust instrument that includes a chemical dust analyzer, a highly reliable impact ionization detector, and two high rate polarized polyvinylidene fluoride (PVDF) detectors. During 6 years en route to Saturn the CDA analysed the interplanetary dust cloud, the stream of interstellar dust, and Jupiter dust streams. During 13 years in orbit around Saturn the CDA studied the E ring, dust in the plumes of Enceladus, and dust in Saturn's environment.

<span class="mw-page-title-main">Enceladus Orbilander</span> Proposed NASA space probe to Saturns moon Enceladus

The Enceladus Orbilander is a proposed NASA Flagship mission to Saturn's moon Enceladus. The Enceladus Orbilander would spend a year and a half orbiting Enceladus and sampling its water plumes, which stretch into space, before landing on the surface for a two-year mission to study materials for evidence of life. The mission, with an estimated cost of $4.9 billion, could launch in the late 2030s on a Space Launch System or Falcon Heavy with a landing in the early 2050s. It was proposed in the 2023–2032 Planetary Science Decadal Survey as the third highest priority Flagship mission, after the Uranus Orbiter and Probe and the Mars Sample Return program.

References

  1. Coustenis, A.; Taylor, F. W. (21 July 2008). Titan: Exploring an Earthlike World. World Scientific. pp. 154–155. ISBN   978-981-281-161-5. OCLC   144226016 . Retrieved 2013-12-29.
  2. 1 2 3 4 Mitri, Giuseppe; Postberg, Frank; Soderblom, Jason M.; Tobie, Gabriel; Tortora, Paolo; Wurz, Peter; Barnes, Jason W.; Coustenis, Athena; Ferri, Francesca; Hayes, Alexander; Hayne, Paul O.; Hillier, Jon; Kempf, Sascha; Lebreton, Jean-Pierre; Lorenz, Ralph; Orosei, Roberto; Petropoulos, Anastassios; Yen, Chen-wan; Reh, Kim R.; Schmidt, Jürgen; Sims, Jon; Sotin, Christophe; Srama, Ralf (2017). "Explorer of Enceladus and Titan (E2T): Investigating the habitability and evolution of ocean worlds in the Saturn system". American Astronomical Society. 48. Bibcode:2016DPS....4822501M . Retrieved 2017-09-16.
  3. Mann, Adam (2 May 2017). "Inner Workings: Icy ocean worlds offer chances to find life". Proceedings of the National Academy of Sciences of the United States of America. 114 (18): 4566–4568. Bibcode:2017PNAS..114.4566M. doi: 10.1073/pnas.1703361114 . PMC   5422794 . PMID   28461387.
  4. 1 2 Mitri, Giuseppe; Tobie, Gabriel; Postberg, Frank; Soderblom, Jason M.; Wurz, Peter; Barnes, Jason W.; Berga, Marco; Coustenis, Athena; D'Ottavio, Andrea; Hayes, Alexander G.; Hayne, Paul O.; Lebreton, Jean-Pierre; Lorenz, Ralph D.; Martelli, Andrea; Petropoulos, Anastassios E.; Yen, Chen-wan L.; Reh, Kim R.; Sotin, Christophe; Srama, Ralf; Tortora, Paolo (June 2017). Poster 14: Explorer of Enceladus and Titan (E2T). Titan Aeronomy and Climate. France: NASA. Bibcode:2016tac..confE..26M.{{cite conference}}: |access-date= requires |url= (help); |archive-url= requires |url= (help)