Colonization of Titan

Last updated

Saturn's moon Titan in natural color Titan in natural color Cassini.jpg
Saturn's moon Titan in natural color

Saturn's largest moon Titan is one of several candidates for possible future colonization of the outer Solar System, though protection against extreme cold is a major consideration.

Contents

According to Cassini data from 2008, Titan has hundreds of times more liquid hydrocarbons than all the known oil and natural gas reserves on Earth. These hydrocarbons rain from the sky and collect in vast deposits that form lakes and dunes. [1] "Titan is just covered in carbon-bearing material—it's a Mega factory of organic chemicals", said Ralph Lorenz, who leads the study of Titan based on radar data from Cassini. "This vast carbon inventory is an important look into the geology and climate history of Titan." Several hundred lakes and seas have been observed, with several dozen estimated to contain more hydrocarbon liquid than Earth's oil and gas reserves. The dark dunes that run along the equator contain a volume of organics several hundred times larger than Earth's coal reserves. [2]

Titan 'sea' (left) compared at scale to Lake Superior (right) PIA09184 -Titan Sea and Lake Superior.jpg
Titan 'sea' (left) compared at scale to Lake Superior (right)

Radar images obtained on July 21, 2006, appear to show lakes of liquid hydrocarbon (such as methane and ethane) in Titan's northern latitudes. This is the first discovery of currently existing lakes beyond Earth. [3] The lakes range in size from about a kilometer in width to one hundred kilometers across.

On March 13, 2007, the Jet Propulsion Laboratory announced that it found strong evidence of seas of methane and ethane in the northern hemisphere. At least one of these is larger than any of the Great Lakes in North America. [4] [ clarification needed ]

Suitability

The American aerospace engineer and author Robert Zubrin identified Saturn as the most important and valuable of the four gas giants in the Solar System, because of its relative proximity, low radiation, and excellent system of moons. He also named Titan as the most important moon on which to establish a base to develop the resources of the Saturn system. [5]

Habitability

Robert Zubrin has pointed out that Titan possesses an abundance of all the elements necessary to support life, saying "In certain ways, Titan is the most hospitable extraterrestrial world within our solar system for human colonization." [6] The atmosphere contains plentiful nitrogen and methane. Additionally, strong evidence indicates that liquid methane exists on the surface. Evidence also indicates the presence of liquid water and ammonia under the surface, which are delivered to the surface by volcanic activity. While this water can be used to generate breathable oxygen, more is blown into Titan's atmosphere from the geysers on the icy moon of Enceladus (also a moon of Saturn), as they start as water molecules and evolve into oxygen and hydrogen. Nitrogen is ideal to add buffer gas partial pressure to breathable air (it forms about 78% of Earth's atmosphere). [7] Nitrogen, methane and ammonia can all be used to produce fertilizer for growing food.

Gravity

Titan has a surface gravity of 0.138 g, slightly less than the Moon. Managing long-term effects of low gravity on human health [8] would therefore be a significant issue for long-term occupation of Titan, more so than on Mars. These effects are still an active field of study. They can include symptoms such as loss of bone density, loss of muscle density, and a weakened immune system. Astronauts in Earth orbit have remained in microgravity for up to a year or more at a time. Effective countermeasures for the negative effects of low gravity are well-established, particularly an aggressive regimen of daily physical exercise or weighted clothing. The variation in the negative effects of low gravity as a function of different levels of low gravity are not known, since all research in this area is restricted to humans in zero gravity. The same goes for the potential effects of low gravity on fetal and pediatric development. It has been hypothesized that children born and raised in low gravity such as on Titan would not be well adapted for life under the higher gravity of Earth. [9]

In situ energy resources

Energy resources include chemical, nuclear, wind, and hydropower (presumably using Methane instead of water). Electrical power could be produced using chemical power plants adding hydrogen to acetylene (i.e. hydrogenation; oxygen is not freely available), or turbines in large methane seas such as Kraken Mare where the tidal pull of Saturn causes up to a meter of tidal change each Titan day. [10] [11]

Flight

The very high ratio of atmospheric density to surface gravity also greatly reduces the wingspan needed for an aircraft to maintain lift, so much so that a human would be able to strap on wings and easily fly through Titan's atmosphere while wearing a sort of spacesuit that could be manufactured with today's technology. [6] Another theoretically possible means to become airborne on Titan would be to use a hot air balloon-like vehicle filled with an Earth-like atmosphere at Earth-like temperatures (because oxygen is only slightly denser than nitrogen, the atmosphere in a habitat on Titan would be about one third as dense as the surrounding atmosphere), although such a vehicle would need a skin able to keep the extreme cold out in spite of the light weight required. Due to Titan's extremely low temperatures, heating of any flight-bound vehicle becomes a key obstacle. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Space colonization</span> Concept of permanent human habitation outside of Earth

Space colonization is the process of establishing human settlements beyond Earth for prestige, commercial and strategic benefits. This is in contrast to space exploration for scientific benefits. Colonialism can involve exploitation of both resources and people by a distant entity.

<span class="mw-page-title-main">Terraforming</span> Hypothetical planetary engineering process

Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make it habitable for humans to live on.

<span class="mw-page-title-main">Titan (moon)</span> Largest moon of Saturn and second-largest moon in Solar System

Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have an atmosphere denser than the Earth's and is the only known object in space—other than Earth—on which there is clear evidence that stable bodies of liquid exist. Titan is one of seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger in diameter than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's Ganymede and is larger than Mercury; yet Titan is only 40% as massive as Mercury, because Mercury is mainly iron and rock while much of Titan is ice, which is less dense.

<i>Huygens</i> (spacecraft) European reconnaissance lander sent to Saturns moon Titan

Huygens was an atmospheric entry robotic space probe that landed successfully on Saturn's moon Titan in 2005. Built and operated by the European Space Agency (ESA), launched by NASA, it was part of the Cassini–Huygens mission and became the first spacecraft to land on Titan and the farthest landing from Earth a spacecraft has ever made. The probe was named after the 17th-century Dutch astronomer Christiaan Huygens, who discovered Titan in 1655.

<span class="mw-page-title-main">Atmosphere</span> Layer of gases surrounding an astronomical body held by gravity

An atmosphere is a layer of gasses that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules.

<span class="mw-page-title-main">Colonization of Mars</span> Proposed concepts for human settlements on Mars

The colonization of Mars is the proposed process of establishing and maintaining control of Martian land for exploitation and the possible settlement of Mars. Most colonization concepts focus on settling, but colonization is a broader ethical concept, which international space law has limited, and national space programs have avoided, instead focusing on human mission to Mars for exploring the planet. Currently there are only proposals for Mars colonization and humans have not set foot on Mars yet.

<span class="mw-page-title-main">Terraforming of Mars</span> Hypothetical modification of Mars into a habitable planet

The terraforming of Mars or the terraformation of Mars is a hypothetical procedure that would consist of a planetary engineering project or concurrent projects aspiring to transform Mars from a planet hostile to terrestrial life to one that could sustainably host humans and other lifeforms free of protection or mediation. The process would involve the modification of the planet's extant climate, atmosphere, and surface through a variety of resource-intensive initiatives, as well as the installation of a novel ecological system or systems.

<span class="mw-page-title-main">Exploration of Saturn</span> Overview of the exploration of Saturn

The exploration of Saturn has been solely performed by crewless probes. Three missions were flybys, which formed an extended foundation of knowledge about the system. The Cassini–Huygens spacecraft, launched in 1997, was in orbit from 2004 to 2017.

<span class="mw-page-title-main">Life on Titan</span> Scientific assessments on the microbial habitability of Titan

Whether there is life on Titan, the largest moon of Saturn, is currently an open question and a topic of scientific assessment and research. Titan is far colder than Earth, but of all the places in the Solar System, Titan is the only place besides Earth known to have liquids in the form of rivers, lakes, and seas on its surface. Its thick atmosphere is chemically active and rich in carbon compounds. On the surface there are small and large bodies of both liquid methane and ethane, and it is likely that there is a layer of liquid water under its ice shell. Some scientists speculate that these liquid mixes may provide prebiotic chemistry for living cells different from those on Earth.

<span class="mw-page-title-main">Atmosphere of Titan</span>

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. Titan is the only natural satellite in the Solar System with an atmosphere that is denser than the atmosphere of Earth and is one of two moons with an atmosphere significant enough to drive weather. Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

<span class="mw-page-title-main">Lakes of Titan</span> Hydrocarbon lakes on Titan, a moon of Saturn

Lakes of liquid ethane and methane exist on the surface of Titan, Saturn's largest moon. This was confirmed by the Cassini–Huygens space probe, as had been suspected since the 1980s. The large bodies of liquid are known as maria (seas) and the small ones as lacūs (lakes).

<span class="mw-page-title-main">Climate of Titan</span>

The climate of Titan, the largest moon of Saturn, is similar in many respects to that of Earth, despite having a far lower surface temperature. Its thick atmosphere, methane rain, and possible cryovolcanism create an analogue, though with different materials, to the climatic changes undergone by Earth during the far shorter year of Earth.

<span class="mw-page-title-main">Ligeia Mare</span> Sea on Titan

Ligeia Mare is a lake in the north polar region of Titan, the planet Saturn's largest moon. It is the second largest body of liquid on the surface of Titan, after Kraken Mare. Larger than Lake Superior on Earth, it is mostly composed of liquid methane, with unknown but lesser components of dissolved nitrogen and ethane, as well as other organic compounds. It is located at 78° N, 249° W, and has been fully imaged by the Cassini spacecraft. Measuring roughly 420 km (260 mi) by 350 km (217 mi) across, it has a surface area of about 126,000 km2, and a shoreline over 2,000 km (1,240 mi) in length. The lake may be hydrologically connected to the larger Kraken Mare. Its namesake is Ligeia, one of the sirens in Greek mythology.

<span class="mw-page-title-main">Titan Saturn System Mission</span> Cancelled NASA/ESA mission concept to Saturn

Titan Saturn System Mission (TSSM) was a joint NASA–ESA proposal for an exploration of Saturn and its moons Titan and Enceladus, where many complex phenomena were revealed by Cassini. TSSM was proposed to launch in 2020, get gravity assists from Earth and Venus, and arrive at the Saturn system in 2029. The 4-year prime mission would include a two-year Saturn tour, a 2-month Titan aero-sampling phase, and a 20-month Titan orbit phase.

<span class="mw-page-title-main">Titan Mare Explorer</span> Proposed spacecraft lander design

Titan Mare Explorer (TiME) is a proposed design for a lander for Saturn's moon Titan. TiME is a relatively low-cost, outer-planet mission designed to measure the organic constituents on Titan and would have performed the first nautical exploration of an extraterrestrial sea, analyze its nature and, possibly, observe its shoreline. As a Discovery-class mission it was designed to be cost-capped at US$425 million, not counting launch vehicle funding. It was proposed to NASA in 2009 by Proxemy Research as a scout-like pioneering mission, originally as part of NASA's Discovery Program. The TiME mission design reached the finalist stage during that Discovery mission selection, but was not selected, and despite attempts in the U.S. Senate failed to get earmark funding in 2013. A related Titan Submarine has also been proposed.

Planetary oceanography, also called astro-oceanography or exo-oceanography, is the study of oceans on planets and moons other than Earth. Unlike other planetary sciences like astrobiology, astrochemistry, and planetary geology, it only began after the discovery of underground oceans in Saturn's moon Titan and Jupiter's moon Europa. This field remains speculative until further missions reach the oceans beneath the rock or ice layer of the moons. There are many theories about oceans or even ocean worlds of celestial bodies in the Solar System, from oceans made of liquid carbon with floating diamonds in Neptune to a gigantic ocean of liquid hydrogen that may exist underneath Jupiter's surface.

Vid Flumina is a river of liquid methane and ethane on Saturn's moon Titan. It is more than 400 km (249 mi) long and flows into Titan's second largest hydrocarbon sea, Ligeia Mare. The surface of Titan is mostly water ice, so Vid Flumina is a river of methane and ethane flowing across and cutting canyons into ice as though it were bedrock. NASA scientists think that it likely has rapids, whirlpools and falls, just like rivers on Earth.

Titan Winged Aerobot (TWA) is a new aerobot exploration vehicle to enter the surface of Saturn's largest moon Titan. NASA has given this contract to Global Aerospace Corporation and Northrop Grumman collectively on July 6, 2016. Under the contract of 2016 NASA Small Business Innovation Research, both the teams will develop the TWA concept and produce a proof of concept prototype for Earth-based testing.

<i>Dragonfly</i> (Titan space probe) Future NASA mission to Titan

Dragonfly is a planned NASA mission to send a robotic rotorcraft to the surface of Titan, the largest moon of Saturn. It is planned to be launched in July 2028 and arrive in 2034. It would be the first aircraft on Titan and is intended to make the first powered and fully controlled atmospheric flight on any moon, with the intention of studying prebiotic chemistry and extraterrestrial habitability. It would then use its vertical takeoffs and landings (VTOL) capability to move between exploration sites.

<span class="mw-page-title-main">Oceanus (Titan orbiter)</span>

Oceanus is a NASA/JPL orbiter mission concept proposed in 2017 for the New Frontiers mission #4, but it was not selected for development. If selected at some future opportunity, Oceanus would travel to Saturn's moon Titan to assess its habitability. Studying Titan would help understand the early Earth and exoplanets which orbit other stars. The mission is named after Oceanus, the Greek god of oceans.

References

  1. Findings from the study led by Ralph Lorenz, Cassini radar team member from the Johns Hopkins University Applied Physics Laboratory, USA, are reported in the 29 January 2008 issue of the Geophysical Research Letters.
  2. "Titan's surface organics surpass oil reserves on Earth". European Space Agency. February 13, 2008. Retrieved October 20, 2016.
  3. "PIA08630: Lakes on Titan". Photojournal. NASA/JPL. July 24, 2006. Retrieved October 28, 2014.
  4. "Cassini Spacecraft Images Seas on Saturn's Moon Titan". Cassini Solstice Mission. NASA/JPL. March 13, 2007. Archived from the original on October 28, 2014. Retrieved October 28, 2014.
  5. Robert Zubrin, Entering Space: Creating a Spacefaring Civilization, section: The Persian Gulf of the solar system, pp. 161-163, Tarcher/Putnam, 1999, ISBN   978-1-58542-036-0
  6. 1 2 Robert Zubrin, Entering Space: Creating a Spacefaring Civilization, section: Titan, pp. 163-166, Tarcher/Putnam, 1999, ISBN   978-1-58542-036-0
  7. Robert Zubrin, The Case for Mars: The Plan to Settle the Red Planet and Why We Must , p. 146, Simon & Schuster/Touchstone, 1996, ISBN   978-0-684-83550-1
  8. Di Filippo, Ester Sara; Chiappalupi, Sara; Falone, Stefano; Dolo, Vincenza; Amicarelli, Fernanda; Marchianò, Silvia; Carino, Adriana; Mascetti, Gabriele; Valentini, Giovanni; Piccirillo, Sara; Balsamo, Michele; Vukich, Marco; Fiorucci, Stefano; Sorci, Guglielmo; Fulle, Stefania (October 3, 2024). "The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue". npj Microgravity. 10 (1): 1–14. doi:10.1038/s41526-024-00432-1. ISSN   2373-8065.
  9. Robert Zubrin, "Colonizing the Outer Solar System", in Islands in the Sky: Bold New Ideas for Colonizing Space , pp. 85-94, Stanley Schmidt and Robert Zubrin, eds., Wiley, 1996, ISBN   978-0-471-13561-6
  10. McKinnon, Mika (July 7, 2017). "Titan's conditions could be just right to power US-sized colony". New Scientist. Archived from the original on July 20, 2024. Retrieved October 7, 2024.
  11. Nield, David (July 10, 2017). "Titan Has Enough Energy to Power a Colony The Size of The US". ScienceAlert. Archived from the original on April 22, 2024. Retrieved October 7, 2024.
  12. Randall Munroe (2013). "Interplanetary Cessna" . Retrieved January 29, 2013.

Further reading