List of microorganisms tested in outer space

Last updated

The survival of some microorganisms exposed to outer space has been studied using both simulated facilities and low Earth orbit exposures. Bacteria were some of the first organisms investigated, when in 1960 a Russian satellite carried Escherichia coli , Staphylococcus , and Enterobacter aerogenes into orbit. [1] Many kinds of microorganisms have been selected for exposure experiments since, as listed in the table below.

Contents

Experiments of the adaption of microbes in space have yielded unpredictable results. While sometimes the microorganism may weaken, they can also increase in their disease-causing potency. [1]

It is possible to classify these microorganisms into two groups, the human-borne and the extremophiles. Studying the human-borne microorganisms is significant for human welfare and future crewed missions in space, whilst the extremophiles are vital for studying the physiological requirements of survival in space. [2] NASA has pointed out that normal adults have ten times as many microbial cells as human cells in their bodies. [3] They are also nearly everywhere in the environment and, although normally invisible, can form slimy biofilms. [3]

Extremophiles have adapted to live in some of the most extreme environments on Earth. This includes hypersaline lakes, arid regions, deep sea, acidic sites, cold and dry polar regions and permafrost. [4] The existence of extremophiles has led to the speculation that microorganisms could survive the harsh conditions of extraterrestrial environments and be used as model organisms to understand the fate of biological systems in these environments. The focus of many experiments has been to investigate the possible survival of organisms inside rocks (lithopanspermia), [2] or their survival on Mars for understanding the likelihood of past or present life on that planet. [2] Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Measuring the resistance of such organisms to space conditions can be applied to develop adequate decontamination procedures. [5]

Research and testing of microorganisms in outer space could eventually be applied for directed panspermia or terraforming.

Table

 Check mark 23x20 02.svg indicates testing conditions
OrganismLow Earth orbit Impact event and planetary ejectionAtmospheric reentrySimulated conditionsReferences
Bacteria & bacterial spores
Actinomyces erythreus
Check mark 23x20 02.svg
[6]
Aeromonas proteolytica
Check mark 23x20 02.svg
[7]
Anabaena cylindrica (akinetes)
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[8]
Azotobacter chroococcum
Check mark 23x20 02.svg
[9]
Azotobacter vinelandii
Check mark 23x20 02.svg
[10]
Bacillus cereus
Check mark 23x20 02.svg
[11]
Bacillus megaterium
Check mark 23x20 02.svg
[12]
Bacillus mycoides
Check mark 23x20 02.svg
[13]
Bacillus pumilus
Check mark 23x20 02.svg
[13] [14]
Bacillus subtilis
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[15] [16] [17] [18] [19]
Bacillus thuringiensis
Check mark 23x20 02.svg
[7]
Carnobacterium
Check mark 23x20 02.svg
[20]
Chroococcidiopsis
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[21] [22] [23] [24]
Clostridium botulinum
Check mark 23x20 02.svg
[12]
Clostridium butyricum
Check mark 23x20 02.svg
[25] [26]
Clostridium celatum
Check mark 23x20 02.svg
[26]
Clostridium mangenotii
Check mark 23x20 02.svg
[26]
Clostridium roseum
Check mark 23x20 02.svg
[26]
Deinococcus aerius
Check mark 23x20 02.svg
[27]
Deinococcus aetherius
Check mark 23x20 02.svg
[28]
Deinococcus geothermalis
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[29]
Deinococcus radiodurans
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[30] [31] [32] [33] [34]
Enterobacter aerogenes
Check mark 23x20 02.svg
[35]
Escherichia coli
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[12] [26] [36] [37]
Gloeocapsa
Check mark 23x20 02.svg
[24]
Gloeocapsopsis pleurocapsoides
Check mark 23x20 02.svg
[38]
Haloarcula-G
Check mark 23x20 02.svg
[39]
Hydrogenomonas eutropha
Check mark 23x20 02.svg
[36]
Klebsiella pneumoniae
Check mark 23x20 02.svg
[12]
Kocuria rosea
Check mark 23x20 02.svg
[40]
Lactobacillus plantarum
Check mark 23x20 02.svg
[41]
Leptolyngbya
Check mark 23x20 02.svg
[38]
Luteococcus japonicus
Check mark 23x20 02.svg
[42]
Micrococcus luteus
Check mark 23x20 02.svg
[42]
Nostoc commune
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[24] [43]
Nostoc microscopicum
Check mark 23x20 02.svg
[38]
Photobacterium
Check mark 23x20 02.svg
[42]
Pseudomonas aeruginosa
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[3] [41]
Pseudomonas fluorescens
Check mark 23x20 02.svg
[41]
Rhodococcus erythropolis
Check mark 23x20 02.svg
[44]
Rhodospirillum rubrum
Check mark 23x20 02.svg
[10]
Salmonella enterica
Check mark 23x20 02.svg
[45]
Serratia marcescens
Check mark 23x20 02.svg
[11]
Serratia plymuthica
Check mark 23x20 02.svg
[46]
Staphylococcus aureus
Check mark 23x20 02.svg
[25] [41]
Streptococcus mutans
Check mark 23x20 02.svg
[47]
Streptomyces albus
Check mark 23x20 02.svg
[41]
Streptomyces coelicolor
Check mark 23x20 02.svg
[47]
Synechococcus (halite)
Check mark 23x20 02.svg
[39] [48] [49]
Synechocystis
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[50]
Symploca
Check mark 23x20 02.svg
[38]
Tolypothrix byssoidea
Check mark 23x20 02.svg
[38]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Halobacterium noricense
Check mark 23x20 02.svg
[51] [52]
Halobacterium salinarum
Check mark 23x20 02.svg
[47]
Halococcus dombrowskii
Check mark 23x20 02.svg
[51]
Halorubrum chaoviatoris
Check mark 23x20 02.svg
[49] [53]
Methanosarcina sp. SA-21/16
Check mark 23x20 02.svg
[54]
Methanobacterium MC-20
Check mark 23x20 02.svg
[54]
Methanosarcina barkeri
Check mark 23x20 02.svg
[54]
Fungi and algae
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspergillus niger
Check mark 23x20 02.svg
[42]
Aspergillus oryzae
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[30] [42]
Aspergillus terreus
Check mark 23x20 02.svg
[55]
Aspergillus versicolor
Check mark 23x20 02.svg
[56]
Chaetomium globosum
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[7]
Cladosporium herbarum
Check mark 23x20 02.svg
[57]
Cryomyces antarcticus
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[58] [59]
Cryomyces minteri
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[58]
Euglena gracilis
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[60] [61] [62] [63]
Mucor plumbeus
Check mark 23x20 02.svg
[42]
Nannochloropsis oculata
Check mark 23x20 02.svg
[64] [65] [66]
Penicillium roqueforti
Check mark 23x20 02.svg
[15]
Rhodotorula mucilaginosa
Check mark 23x20 02.svg
[42]
Sordaria fimicola
Check mark 23x20 02.svg
[67]
Trebouxia
Check mark 23x20 02.svg
[68]
Trichoderma koningii
Check mark 23x20 02.svg
[53]
Trichoderma longibrachiatum
Check mark 23x20 02.svg
[69]
Trichophyton terrestre
Check mark 23x20 02.svg
[7]
Ulocladium atrum
Check mark 23x20 02.svg
[18]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspicilia fruticulosa
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[70]
Buellia frigida
Check mark 23x20 02.svg
[71]
Circinaria gyrosa
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[68] [72]
Rhizocarpon geographicum
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[68] [73]
Rosenvingiella
Check mark 23x20 02.svg
[24]
Xanthoria elegans
Check mark 23x20 02.svg
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[74] [75] [76] [77] [78]
Xanthoria parietina
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[75]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
T7 phage
Check mark 23x20 02.svg
[7]
Canine hepatitis
Check mark 23x20 02.svg
[79]
Influenza PR8
Check mark 23x20 02.svg
[79]
Tobacco mosaic virus
Check mark 23x20 02.svg
[47] [79]
Vaccinia virus
Check mark 23x20 02.svg
[79]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Rhodotorula rubra
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[7]
Saccharomyces cerevisiae
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[7]
Saccharomyces ellipsoides
Check mark 23x20 02.svg
[36]
Zygosaccharomyces bailii
Check mark 23x20 02.svg
[36]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Caenorhabditis elegans
(nematode)
Check mark 23x20 02.svg
[80] [81]
Hypsibius dujardini
(tardigrade)
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[82] [83]
Milnesium tardigradum
(tardigrade)
Check mark 23x20 02.svg
[84] [85] [86]
Richtersius coronifer
(tardigrade)
Check mark 23x20 02.svg
Check mark 23x20 02.svg
[84] [87]
Mniobia russeola
(rotifer)
Check mark 23x20 02.svg
[87]

See also

Misc
Low Earth orbit missions

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Panspermia</span> Hypothesis on the interstellar spreading of primordial life

Panspermia is the hypothesis that life exists throughout the Universe, distributed by space dust, meteoroids, asteroids, comets, and planetoids, as well as by spacecraft carrying unintended contamination by microorganisms, known as directed panspermia. The theory argues that life did not originate on Earth, but instead evolved somewhere else and seeded life as we know it.

<span class="mw-page-title-main">Life on Mars</span> Scientific assessments on the microbial habitability of Mars

The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.

<span class="mw-page-title-main">Planetary protection</span> Prevention of interplanetary biological contamination

Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail.

<span class="mw-page-title-main">Astrobotany</span> Study of plants grown in spacecraft

Astrobotany is an applied sub-discipline of botany that is the study of plants in space environments. It is a branch of astrobiology and botany.

<span class="mw-page-title-main">EXPOSE</span> External facility on the ISS dedicated to astrobiology experiments

EXPOSE is a multi-user facility mounted outside the International Space Station (ISS) dedicated to astrobiology. EXPOSE was developed by the European Space Agency (ESA) for long-term spaceflights and was designed to allow exposure of chemical and biological samples to outer space while recording data during exposure.

<span class="mw-page-title-main">Living Interplanetary Flight Experiment</span> The Planetary Societys contribution to the failed Fobos-Grunt mission (2011)

The Living Interplanetary Flight Experiment was an interplanetary mission developed by the Planetary Society. It consisted of sending selected microorganisms on a three-year interplanetary round-trip in a small capsule aboard the Russian Fobos-Grunt spacecraft in 2011, which was a failed sample-return mission to the Martian moon Phobos. The Fobos-Grunt mission failed to leave Earth orbit and was destroyed.

<i>Deinococcus radiodurans</i> Radioresistant extremophile species of bacterium

Deinococcus radiodurans is a bacterium, an extremophile and one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and therefore is known as a polyextremophile. The Guinness Book Of World Records listed it as the world's toughest known bacterium.

<span class="mw-page-title-main">O/OREOS</span> NASA nanosatellite with 2 astrobiology experiments on board

The O/OREOS is a NASA automated CubeSat nanosatellite laboratory approximately the size of a loaf of bread that contains two separate astrobiology experiments on board. Developed by the Small Spacecraft Division at NASA Ames Research Center, the spacecraft was successfully launched as a secondary payload on STP-S26 led by the Space Test Program of the United States Air Force on a Minotaur IV launch vehicle from Kodiak Island, Alaska on 20 November 2010, at 01:25:00 UTC.

Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.

<span class="mw-page-title-main">Icebreaker Life</span>

Icebreaker Life is a Mars lander mission concept proposed to NASA's Discovery Program. The mission involves a stationary lander that would be a near copy of the successful 2008 Phoenix and InSight spacecraft, but would carry an astrobiology scientific payload, including a drill to sample ice-cemented ground in the northern plains to conduct a search for biosignatures of current or past life on Mars.

<span class="mw-page-title-main">BIOPAN</span> ESA research program investigating the effects of space environment on biological material

BIOPAN is a multi-user research program by the European Space Agency (ESA) designed to investigate the effect of the space environment on biological material. The experiments in BIOPAN are exposed to solar and cosmic radiation, the space vacuum and weightlessness, or a selection thereof. Optionally, the experiment temperature can be stabilized. BIOPAN hosts astrobiology, radiobiology and materials science experiments.

<span class="mw-page-title-main">Exobiology Radiation Assembly</span> ESA Earth satellite experiment (1992–93)

Exobiology Radiation Assembly (ERA) was an experiment that investigated the biological effects of space radiation. An astrobiology mission developed by the European Space Agency (ESA), it took place aboard the European Retrievable Carrier (EURECA), an unmanned 4.5 tonne satellite with a payload of 15 experiments.

ExoLance is a low-cost mission concept that could hitch a ride on other missions to Mars in an effort to look for evidence of subsurface life.

Exposing Microorganisms in the Stratosphere (E-MIST) is a NASA study to determine if a specific microorganism could survive conditions like those on the planet Mars. The study transported Bacillus pumilus bacteria and their spores by helium-filled balloon to the stratosphere of Earth and monitored the ability of the microorganisms to survive in extreme Martian-like conditions such as low pressure, dryness, cold, and ionizing radiation.

Cryomyces antarcticus is a fungus of uncertain placement in the class Dothideomycetes, division Ascomycota. Found in Antarctica, it was described as new to science in 2005. It has been found to be able to survive the harsh outer space environment and cosmic radiation. A proposed mechanistic contributor to the unique resilience observed in C. antarcticus is the presence of its thick and highly melanized cell walls. This melanin may act to protect DNA from damage while C. antarcticus is exposed to conditions that are unsuitable for typical DNA repair systems to function.

Daniela Billi is an Italian astrobiologist working at the University of Rome Tor Vergata. She is known for her work on desert cyanobacteria of the genus Chroococcidiopsis.

Astro microbiology, or exo microbiology, is the study of microorganisms in outer space. It stems from an interdisciplinary approach, which incorporates both microbiology and astrobiology. Astrobiology's efforts are aimed at understanding the origins of life and the search for life other than on Earth. Because microorganisms are the most widespread form of life on Earth, and are capable of colonising almost any environment, scientists usually focus on microbial life in the field of astrobiology. Moreover, small and simple cells usually evolve first on a planet rather than larger, multicellular organisms, and have an increased likelihood of being transported from one planet to another via the panspermia theory.

Mars habitability analogue environments on Earth are environments that share potentially relevant astrobiological conditions with Mars. These include sites that are analogues of potential subsurface habitats, and deep subsurface habitats.

Signs Of LIfe Detector (SOLID) is an analytical instrument under development to detect extraterrestrial life in the form of organic biosignatures obtained from a core drill during planetary exploration.

References

  1. 1 2 Love, Shayla (2016-10-26). "Bacteria get dangerously weird in space". The Independent. Retrieved 2016-10-27.
  2. 1 2 3 Olsson-Francis, K.; Cockell, C. S. (2010). "Experimental methods for studying microbial survival in extraterrestrial environments" (PDF). Journal of Microbiological Methods. 80 (1): 1–13. doi:10.1016/j.mimet.2009.10.004. PMID   19854226. Archived from the original (PDF) on 2017-08-11. Retrieved 2013-08-06.
  3. 1 2 3 NASA – Spaceflight Alters Bacterial Social Networks (2013)
  4. Rothschild, L. J.; Mancinelli, R. L. (2001). "Life in extreme environments". Nature. 409 (6823): 1092–101. Bibcode:2001Natur.409.1092R. doi:10.1038/35059215. PMID   11234023. S2CID   529873.
  5. Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology. 12 (5): 469–86. Bibcode:2012AsBio..12..469N. doi:10.1089/ast.2011.0748. PMID   22680693.
  6. Dublin, M.; Volz, P. A. (1973). "Space-related research in mycology concurrent with the first decade of manned space exploration". Space Life Sciences. 4 (2): 223–30. Bibcode:1973SLSci...4..223D. doi:10.1007/BF00924469. PMID   4598191. S2CID   11871141.
  7. 1 2 3 4 5 6 7 Taylor, G. R.; Bailey, J. V.; Benton, E. V. (1975). "Physical dosimetric evaluations in the Apollo 16 microbial response experiment". Life Sciences in Space Research. 13: 135–41. PMID   11913418.
  8. Olsson-Francis, K.; de la Torre, R.; Towner, M. C.; Cockell, C. S. (2009). "Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions". Origins of Life and Evolution of Biospheres. 39 (6): 565–579. Bibcode:2009OLEB...39..565O. doi:10.1007/s11084-009-9167-4. PMID   19387863. S2CID   7228756.
  9. Moll, D. M.; Vestal, J. R. (1992). "Survival of microorganisms in smectite clays: Implications for Martian exobiology". Icarus. 98 (2): 233–9. Bibcode:1992Icar...98..233M. doi:10.1016/0019-1035(92)90092-L. PMID   11539360.
  10. 1 2 Roberts, T. L.; Wynne, E. S. (1962). "Studies with a simulated Martian environment". Journal of the Astronautical Sciences. 10: 65–74.
  11. 1 2 Hagen, C. A.; Hawrylewicz, E. J.; Ehrlich, R. (1967). "Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores". Applied Microbiology. 15 (2): 285–291. doi:10.1128/AEM.15.2.285-291.1967. PMC   546892 . PMID   4961769.
  12. 1 2 3 4 Hawrylewicz, E.; Gowdy, B.; Ehrlich, R. (1962). "Micro-organisms under a Simulated Martian Environment". Nature. 193 (4814): 497. Bibcode:1962Natur.193..497H. doi: 10.1038/193497a0 . S2CID   4149916.
  13. 1 2 Imshenetskiĭ, A. A.; Murzakov, B. G.; Evdokimova, M. D.; Dorofeeva, I. K. (1984). "Survival of bacteria in the Artificial Mars unit". Mikrobiologiia. 53 (5): 731–7. PMID   6439981.
  14. Horneck, G. (2012). "Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission". Astrobiology. 12 (5): 445–56. Bibcode:2012AsBio..12..445H. doi:10.1089/ast.2011.0737. PMC   3371261 . PMID   22680691.
  15. 1 2 Hotchin, J.; Lorenz, P.; Hemenway, C. (1965). "Survival of Micro-Organisms in Space". Nature. 206 (4983): 442–445. Bibcode:1965Natur.206..442H. doi:10.1038/206442a0. PMID   4284122. S2CID   4156325.
  16. Horneck, G.; Bücker, H.; Reitz, G. (1994). "Long-term survival of bacterial spores in space". Advances in Space Research. 14 (10): 41–5. Bibcode:1994AdSpR..14j..41H. doi:10.1016/0273-1177(94)90448-0. PMID   11539977.
  17. Fajardo-Cavazos, P.; Link, L.; Melosh, H. J.; Nicholson, W. L. (2005). "Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia". Astrobiology. 5 (6): 726–36. Bibcode:2005AsBio...5..726F. doi:10.1089/ast.2005.5.726. PMID   16379527.
  18. 1 2 Brandstätter, F. (2008). "Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment". Planetary and Space Science. 56 (7): 976–984. Bibcode:2008P&SS...56..976B. CiteSeerX   10.1.1.549.4307 . doi:10.1016/j.pss.2007.12.014.
  19. Wassmann, M. (2012). "Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E". Astrobiology. 12 (5): 498–507. Bibcode:2012AsBio..12..498W. doi:10.1089/ast.2011.0772. PMID   22680695.
  20. Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, u; Schuerger, Andrew C. (24 December 2012). "Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars". PNAS USA. 110 (2): 666–671. Bibcode:2013PNAS..110..666N. doi: 10.1073/pnas.1209793110 . PMC   3545801 . PMID   23267097.
  21. Cockell, C. S.; Schuerger, A. C.; Billi, D.; Imre Friedmann, E.; Panitz, C. (2005). "Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029". Astrobiology. 5 (2): 127–140. Bibcode:2005AsBio...5..127C. doi:10.1089/ast.2005.5.127. PMID   15815164.
  22. Billi, D. (2011). "Damage Escape and Repair in Dried Chroococcidiopsis spp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions". Astrobiology. 11 (1): 65–73. Bibcode:2011AsBio..11...65B. doi:10.1089/ast.2009.0430. PMID   21294638.
  23. Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela (20 August 2013). "The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes". Acta Astronautica. 91: 180–186. Bibcode:2013AcAau..91..180B. doi:10.1016/j.actaastro.2013.05.015.
  24. 1 2 3 4 Cockell, Charles S.; Rettberg, Petra; Rabbow, Elke; Olson-Francis, Karen (19 May 2011). "Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth". The ISME Journal. 5 (10): 1671–1682. Bibcode:2011ISMEJ...5.1671C. doi: 10.1038/ismej.2011.46 . PMC   3176519 . PMID   21593797.
  25. 1 2 Parfenov, G. P.; Lukin, A. A. (1973). "Results and prospects of microbiological studies in outer space". Space Life Sciences. 4 (1): 160–179. Bibcode:1973SLSci...4..160P. doi:10.1007/BF02626350. PMID   4576727. S2CID   11421221.
  26. 1 2 3 4 5 Koike, J. (1996). "Fundamental studies concerning planetary quarantine in space". Advances in Space Research. 18 (1–2): 339–44. Bibcode:1996AdSpR..18a.339K. doi:10.1016/0273-1177(95)00825-Y. PMID   11538982.
  27. Survival and DNA damage of cell-aggregate of Deinococcus spp. exposed to space for two-years in Tanpopo mission. Kawaguchi, Yuko; Hashimoto, Hirofumi; Yokobori, Shin-ichi; Yamagishi, Akihiko; Shibuya, Mio; Kinoshita, Iori; Hayashi, Risako; Yatabe, Jun; Narumi, Issay; Fujiwara, Daisuke; Murano, Yuka. 42nd COSPAR Scientific Assembly. Held 14–22 July 2018, in Pasadena, California, USA, Abstract id. F3.1-5-18. July 2018.
  28. Yamagishi Akihiko, Kawaguchi Yuko, Hashimoto Hirofumi, Yano Hajime, Imai Eiichi, Kodaira Satoshi, Uchihori Yukio, Nakagawa Kazumichi (2018). "Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission". Astrobiology. 18 (11): 1369–1374. Bibcode:2018AsBio..18.1369Y. doi:10.1089/ast.2017.1751. PMID   30289276. S2CID   52920452.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests. EPSC Abstracts. Vol. 8, EPSC2013-930, 2013. European Planetary Science Congress 2013.
  30. 1 2 Dose, K. (1995). "ERA-experiment "space biochemistry"". Advances in Space Research. 16 (8): 119–29. Bibcode:1995AdSpR..16h.119D. doi:10.1016/0273-1177(95)00280-R. PMID   11542696.
  31. Mastrapa, R. M. E; Glanzberg, H.; Head, J. N; Melosh, H. J; Nicholson, W. L (2001). "Survival of bacteria exposed to extreme acceleration: Implications for panspermia". Earth and Planetary Science Letters. 189 (1–2): 1–8. Bibcode:2001E&PSL.189....1M. doi:10.1016/S0012-821X(01)00342-9.
  32. De La Vega, U. P.; Rettberg, P.; Reitz, G. (2007). "Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans". Advances in Space Research. 40 (11): 1672–1677. Bibcode:2007AdSpR..40.1672D. doi:10.1016/j.asr.2007.05.022.
  33. Strickland, Ashley (26 August 2020). "Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study". CNN News . Retrieved 26 August 2020.
  34. Kawaguchi, Yuko; et al. (26 August 2020). "DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space". Frontiers in Microbiology . 11: 2050. doi: 10.3389/fmicb.2020.02050 . PMC   7479814 . PMID   32983036.
  35. Young, R. S.; Deal, P. H.; Bell, J.; Allen, J. L. (1964). "Bacteria under simulated Martian conditions". Life Sciences in Space Research. 2: 105–11. PMID   11881642.
  36. 1 2 3 4 Grigoryev, Y. G. (1972). "Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea". Life Sciences in Space Research. 10: 113–8. PMID   11898831.
  37. Willis, M.; Ahrens, T.; Bertani, L.; Nash, C. (2006). "Bugbuster—survivability of living bacteria upon shock compression". Earth and Planetary Science Letters. 247 (3–4): 185–196. Bibcode:2006E&PSL.247..185W. doi:10.1016/j.epsl.2006.03.054.
  38. 1 2 3 4 5 de Vera, J. P.; Dulai, S.; Kereszturi, A.; Koncz, L.; Pocs, T. (17 October 2013). "Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions". International Journal of Astrobiology. 13 (1): 35–44. Bibcode:2014IJAsB..13...35D. doi:10.1017/S1473550413000323. S2CID   83647440.
  39. 1 2 Mancinelli, R. L.; White, M. R.; Rothschild, L. J. (1998). "Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment". Advances in Space Research. 22 (3): 327–334. Bibcode:1998AdSpR..22..327M. doi:10.1016/S0273-1177(98)00189-6.
  40. Imshenetskiĭ, A. A.; Kuzyurina, L. A.; Yakshina, V.M. (1979). "Xerophytic microorganisms multiplying under conditions close to Martian ones". Mikrobiologiia. 48 (1): 76–9. PMID   106224.
  41. 1 2 3 4 5 Hawrylewicz, E.; Hagen, C. A.; Tolkacz, V.; Anderson, B. T.; Ewing, M. (1968). "Probability of growth pG of viable microorganisms in Martian environments". Life Sciences in Space Research VI. pp. 146–156.
  42. 1 2 3 4 5 6 7 Zhukova, A. I.; Kondratyev, I. I. (1965). "On artificial Martian conditions reproduced for microbiological research". Life Sciences in Space Research. 3: 120–6. PMID   12199257.
  43. Jänchena, Jochen; Feyha, Nina; Szewzyka, Ulrich; de Vera, Jean-Pierre P. (3 August 2015). "Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions". International Journal of Astrobiology. 15 (2): 107–118. Bibcode:2016IJAsB..15..107J. doi: 10.1017/S147355041500018X .
  44. Burchell, M. (2001). "Survivability of Bacteria in Hypervelocity Impact". Icarus. 154 (2): 545–547. Bibcode:2001Icar..154..545B. doi:10.1006/icar.2001.6738.
  45. Raktim, Roy; Phani, Shilpa P.; Sangram, Bagh (1 September 2016). "A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions". Astrobiology. 16 (9): 677–689. Bibcode:2016AsBio..16..677R. doi:10.1089/ast.2015.1420. PMID   27623197.
  46. Roten, C. A.; Gallusser, A.; Borruat, G. D.; Udry, S. D.; Karamata, D. (1998). "Impact resistance of bacteria entrapped in small meteorites". Bulletin de la Société Vaudoise des Sciences Naturelles. 86 (1): 1–17.
  47. 1 2 3 4 Koike, J.; Oshima, T.; Kobayashi, K.; Kawasaki, Y. (1995). "Studies in the search for life on Mars". Advances in Space Research. 15 (3): 211–4. Bibcode:1995AdSpR..15c.211K. doi:10.1016/S0273-1177(99)80086-6. PMID   11539227.
  48. "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Archived from the original on 7 April 2013. Retrieved 2013-08-07.
  49. 1 2 Mancinelli, R. L. (January 2015). "The affect [sic] of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 123–128. Bibcode:2015IJAsB..14..123M. doi:10.1017/S147355041400055X. S2CID   44120218 . Retrieved 2015-05-09.
  50. Klementiev, K. E.; Maksimov, E. G.; Gvozdev, D. A.; Tsoraev, G. V.; et al. (2019). "Radioprotective role of cyanobacterial phycobilisomes". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1860 (2): 121–128. doi: 10.1016/j.bbabio.2018.11.018 . PMID   30465750.
  51. 1 2 Stan-Lotter, H. (2002). "Astrobiology with haloarchaea from Permo-Triassic rock salt". International Journal of Astrobiology. 1 (4): 271–284. Bibcode:2002IJAsB...1..271S. doi:10.1017/S1473550403001307. S2CID   86665831.
  52. Shiladitya DasSarma. "Extreme Halophiles Are Models for Astrobiology". American Society for Microbiology. Archived from the original on 2011-07-22.
  53. 1 2 "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Archived from the original on 7 April 2013. Retrieved 2013-08-07.
  54. 1 2 3 Morozova, D.; Möhlmann, D.; Wagner, D. (2006). "Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions" (PDF). Origins of Life and Evolution of Biospheres. 37 (2): 189–200. Bibcode:2007OLEB...37..189M. doi:10.1007/s11084-006-9024-7. PMID   17160628. S2CID   15620946.
  55. Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A.C. (2011). "Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation" (PDF). Planetary and Space Science. 59 (1): 63–78. Bibcode:2011P&SS...59...63S. doi:10.1016/j.pss.2010.11.002. hdl: 10442/15561 .
  56. Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S. (January 2015). "Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment". International Journal of Astrobiology. 14 (1): 137–142. Bibcode:2015IJAsB..14..137N. doi: 10.1017/S1473550414000731 . S2CID   85458386.
  57. Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, .P.S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A.D.; Kakabakos, S.; Cefalas, A.C. (2014). "Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum". Journal of Applied Physics. 116 (10): 104701. Bibcode:2014JAP...116j4701S. doi:10.1063/1.4894621.
  58. 1 2 Wall, Mike (January 29, 2016). "Fungi Survive Mars-Like Conditions On Space Station". Space.com. Retrieved 2016-01-29.
  59. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests. Claudia Pacelli, Laura Selbmann, Laura Zucconi, Jean-Pierre De Vera, Elke Rabbow, Gerda Horneck, Rosa de la Torre, Silvano Onofri. Origins of Life and Evolution of Biospheres. June 2017, Volume 47, Issue 2, pp 187–202
  60. Häder DP, Richter PR, Strauch SM, et al. (2006). "Aquacells — Flagellates under long-term microgravity and potential usage for life support systems". Microgravity Sci. Technol. 18 (210): 210–214. Bibcode:2006MicST..18..210H. doi:10.1007/BF02870411. S2CID   121659796.
  61. Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M, Legué V (2014). "The influence of microgravity on Euglena gracilis as studied on Shenzhou 8". Plant Biol J. 16: 113–119. Bibcode:2014PlBio..16S.113N. doi:10.1111/plb.12067. PMID   23926886.
  62. Strauch Sebastian M., Becker Ina, Pölloth Laura, Richter Peter R., Haag Ferdinand W. M., Hauslage Jens, Lebert Michael (2018). "Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments". International Journal of Astrobiology. 17 (2): 101–111. Bibcode:2018IJAsB..17..101S. doi:10.1017/S1473550417000131. S2CID   90868067.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. Strauch S.M., Richter P., Schuster M., Häder D.-P. (2010). "The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights". Journal of Plant Physiology. 167 (1): 41–46. doi:10.1016/j.jplph.2009.07.009. PMID   19679374.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. Pasini, J. L. S.; Price, M. C. (2015). Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events (PDF). 46th Lunar and Planetary Science Conference.
  65. Pasini D. L. S. et al. LPSC44, 1497. (2013).
  66. Pasini D. L. S. et al. EPSC2013, 396. (2013).
  67. Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R. (1994). "First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores". Advances in Space Research. 14 (10): 47–51. Bibcode:1994AdSpR..14j..47Z. doi:10.1016/0273-1177(94)90449-9. PMID   11539984.
  68. 1 2 3 Sánchez, Francisco Javier; Meeßen, Joachim; Ruiza, M. del Carmen; Sancho, Leopoldo G.; de la Torre, Rosa (6 September 2013). "UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances". International Journal of Astrobiology. 13 (1): 1–18. Bibcode:2014IJAsB..13....1S. doi: 10.1017/S147355041300027X .
  69. Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna; Horneck, Gerda (January 2015). "Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 129–135. Bibcode:2015IJAsB..14..129N. doi:10.1017/S1473550414000408. S2CID   121455217.
  70. Raggio, J. (2011). "Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa". Astrobiology. 11 (4): 281–92. Bibcode:2011AsBio..11..281R. doi:10.1089/ast.2010.0588. PMID   21545267.
  71. Meeßen, J.; Wuthenow, P.; Schille, P.; Rabbow, E.; de Vera, J.-P.P (August 2015). "Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability". Astrobiology. 15 (8): 601–615. Bibcode:2015AsBio..15..601M. doi:10.1089/ast.2015.1281. PMC   4554929 . PMID   26218403.
  72. Rosa, Zélia Miller Ana, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, Meeßen Joachim (2017). "The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa". Astrobiology. 17 (2): 145–153. Bibcode:2017AsBio..17..145D. doi:10.1089/ast.2015.1454. PMID   28206822.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. de La Torre Noetzel, R. (2007). "BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem". Advances in Space Research. 40 (11): 1665–1671. Bibcode:2007AdSpR..40.1665D. doi:10.1016/j.asr.2007.02.022.
  74. Sancho, L. G. (2007). "Lichens survive in space: Results from the 2005 LICHENS experiment". Astrobiology. 7 (3): 443–54. Bibcode:2007AsBio...7..443S. doi:10.1089/ast.2006.0046. PMID   17630840.
  75. 1 2 De Vera, J.-P.; Horneck, G.; Rettberg, P.; Ott, S. (2004). "The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions". Advances in Space Research. 33 (8): 1236–43. Bibcode:2004AdSpR..33.1236D. doi:10.1016/j.asr.2003.10.035. PMID   15806704.
  76. Horneck, G. (2008). "Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID   18237257.
  77. Brandt, Annette; De Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde (2014). "Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS". International Journal of Astrobiology. 14 (3): 411–425. Bibcode:2015IJAsB..14..411B. doi: 10.1017/S1473550414000214 .
  78. Horneck G, et al. (2008). "Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID   18237257.
  79. 1 2 3 4 Hotchin, J. (1968). "The Microbiology of Space". Journal of the British Interplanetary Society. 21: 122. Bibcode:1968JBIS...21..122H.
  80. Higashibata A (2006). "Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight". Journal of Experimental Biology. 209 (16): 3209–3218. doi: 10.1242/jeb.02365 . PMID   16888068.
  81. International Caenorhabditis elegans Experiment First Flight-Genomics (ICE-First-Genomics). November 22, 2016.
  82. Pasini D. L. S. et al. LPSC45, 1789. (2014).
  83. Pasini D. L. S. et al. EPSC2014, 67. (2014).
  84. 1 2 Jönsson, K. I.; Rabbow, E.; Schill, Ralph O.; Harms-Ringdahl, M.; Rettberg, P. (2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology. 18 (17): R729–R731. Bibcode:2008CBio...18.R729J. doi: 10.1016/j.cub.2008.06.048 . PMID   18786368. S2CID   8566993.
  85. "BIOKon In Space (BIOKIS)". NASA. 17 May 2011. Archived from the original on 17 April 2011. Retrieved 2011-05-24.
  86. Brennard, Emma (17 May 2011). "Tardigrades: Water bears in space". BBC . Retrieved 2011-05-24.
  87. 1 2 Jönsson, K. Ingemar; Wojcik, Andrzej (February 2017). "Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola". Astrobiology. 17 (2): 163–167. Bibcode:2017AsBio..17..163J. doi:10.1089/ast.2015.1462. ISSN   1531-1074. PMID   28206820.