Aspergillus versicolor

Last updated

Aspergillus versicolor
Aspergillus versicolor.jpeg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Aspergillus
Species:
A. versicolor
Binomial name
Aspergillus versicolor
(Vuillemin) Tiraboschi (1908)
Synonyms
  • Sterigmatocystis versicolorVuillemin (1903)

Aspergillus versicolor is a slow-growing species of filamentous fungus commonly found in damp indoor environments and on food products. [1] [2] It has a characteristic musty odor associated with moldy homes and is a major producer of the hepatotoxic and carcinogenic mycotoxin sterigmatocystin. [3] [4] Like other Aspergillus species, A. versicolor is an eye, nose, and throat irritant.

Contents

Taxonomy

The fungus was first described by Jean-Paul Vuillemin in 1903 under the name Sterigmatocystis versicolor, and was later moved to the genus Aspergillus by Carlo Tiraboschi in 1908. Presently, the genus Sterigmatocystis is obsolete. [1]

Ecology

Aspergillus versicolor is a highly ubiquitous species commonly isolated from soil, plant debris, marine environments, and indoor air environments. [5] [6] It is among the most common of indoor molds, often reported in dust and in water-damaged building materials, such as wallboards, insulation, textiles, ceiling tiles, and manufactured wood. [7] [8]

Aspergillus versicolor is a highly resilient fungus, explaining its wide global distribution in a variety of environmental conditions. Although it grows optimally between 22 and 26 °C, A. versicolor can grow at a larger temperature range from 4–40 °C. [9] The fungus can also tolerate a wide pH range, and is particularly resistant to alkaline conditions. [1] The soil depth at which the fungus can be found is variable (down to 50 cm), but it appears to be particularly abundant in deeper soils. [1]

Like other members of its genus, A. versicolor displays moderate xerophillic characteristics, meaning that it can grow in conditions with low water activity (down to aW of 0.75–0.81 in the optimal temperature range). [9] A. versicolor is also considered to be osmophilic as it is able to survive in solutions that are up to 30% NaCl or 40% sucrose. [10] This makes the fungus an economically important spoilage organism for stored grains, rice, tea, and spices. [1] [11] Additionally, A. versicolor has been isolated from areas with high saline levels including the Dead Sea. [1] [12] [13] Other extreme habitats from which the fungus has been reported include peat bogs, deglaciated Arctic soil, and uranium mines. [1]

Morphology

Colonies vary greatly in colour, growth rate, and surface characteristics depending upon growth conditions. By contrast, microscopic morphology tends to be consistent independent of growth parameters. [1] Colonies are typically white at the start of development, and change to yellow, orange, and green, often with pink or flesh hues intermixed, as they mature. [5] Reverse pigmentation is often variable as well, especially for incubation periods greater than two weeks in duration. [1] [12]

Aspergillus versicolor has long, septate hyphae that appear glassy and transparent. Conidiphores, which are specialized hyphal stalks for asexual reproduction, typically measure 120–700 μm in length. Conidiophores terminate in small vesicles (10–15 μm in diameter) that are biseriate (i.e., with two successive layers of cells interposing the vesicle and conidia). The first layer of cells are called metulae upon which phialides are borne. The vesicles are variable in shape but are often described as "spoon-shaped". [10] Conidia are spherical, approximately 2.5–3.5 μm in diameter, and may have smooth or slightly roughened surfaces. [1] [6]

Secondary metabolism

Aspergillus versicolor is able to grow on a variety of surfaces, including those that are nutrient-deficient, because it is autotrophic for most growth substances and the macronutrient riboflavin. [10] Additionally, A. versicolor has high activity levels of xylanase, an enzyme that breaks down hemicellulose in plant cell walls. Xylanase is a secondary metabolite controlled through gene-specific induction and carbon catabolite repression. [14]

Many metabolites produced by A. versicolor exhibit antibacterial, fungicidal, insecticidal, and cytotoxic properties. For example, a sesquiterpenoid nitrobenzoyl ester isolated from hyphae have been shown to be potent inhibitor of human breast and colon cancer cell lines. Other extracted compounds that are cytotoxic towards cancer cells include xanthones, fellutamides, and anthraquinones. [15] Anthraquinone appears yellowish in appearance, and like other pigment molecules, it is regularly produced by A. versicolor. [1] [10] Additional studies on the fungus have demonstrated various metabolites with activity against bacteria such as M. tuberculosis and yeasts like C. albicans. [15] Aspergillomarasmine A has been reported to inhibit two antibiotic resistance carbapenemase proteins in bacteria.King, Andrew M.; Sarah A. Reid-Yu; Wenliang Wang; Dustin T. King; Gianfranco De Pascale; Natalie C. Strynadka; Timothy R. Walsh; Brian K. Coombes; Gerard D. Wright (2014). "Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance". Nature. 510 (7506): 503–506. Bibcode:2014Natur.510..503K. doi:10.1038/nature13445. ISSN   0028-0836. PMC   4981499 . PMID   24965651.

Mycotoxins, such as nidulotoxins and aflatoxin B1, are typically produced in relatively low concentrations by A. versicolor. [1] The only exception is sterigmatocystin, which can account for up to 1% of the total biomass of A. versicolor under optimal conditions (e.g. aW of 1). [8] Not many spores are produced by A. versicolor, so it is suspected that human exposured to sterigmatocystins occur through micro-fragments derived from the colonies. [8]

Disease

Like other members of its species, A. versicolor is an opportunistic pathogen and is considered to be an important causative agent of aspergillosis. [6] There have been reported cases of the fungus causing onychomycosis, which is often treated with topical azoles. However, A. versicolor is insensitive to these treatments and the infection can persist even after months or years of treatment. Studies have shown that like other Aspergillus species, A. versicolor is highly sensitive to terbinafine, which has in vitro fungicidal activity. [16]

There are more than 20 allergens that have been identified from A. versicolor, with the most abundant being glyceraldehyde-3-phosphate dehydrogenase. [17] Other proteins include sorbitol reductase, catalase, enolase, malate dehydrogenase, and Asp v 13. It is common in developed countries to measure IgG responses in humans. [18]

Additionally, mycotoxins can act as immunosuppressants, which may explain some increased prevalence of frequent infections among inhabitants of damp buildings. [19]

Industrial uses

Fungi provide an effective, economic, and environmentally-friendly method of removing harmful wastes that accumulate as byproducts of industrial activities. For example, A. versicolor is very effective at removing lead ions, adsorbing 45 mg of lead per gram of dry fungal biomass. The process proceeds quickly with 80% of ions adsorbed within an hour. [20] Aspergillus versicolor is also useful in the industrial production and purification of xylanase, which is often used to degrade xylan in waste products from hardwood manufacturing and agricultural activities. [21]

Related Research Articles

<span class="mw-page-title-main">Mold</span> Wooly, dust-like fungal structure or substance

A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.

A mycotoxin is a toxic secondary metabolite produced by fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<span class="mw-page-title-main">Sterigmatocystin</span> Chemical compound

Sterigmatocystin is a polyketide mycotoxin produced by certain species of Aspergillus. The toxin is naturally found in some cheeses.

<i>Aspergillus terreus</i> Species of fungus

Aspergillus terreus, also known as Aspergillus terrestris, is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, A. terreus is now known to be capable of sexual reproduction. This saprotrophic fungus is prevalent in warmer climates such as tropical and subtropical regions. Aside from being located in soil, A. terreus has also been found in habitats such as decomposing vegetation and dust. A. terreus is commonly used in industry to produce important organic acids, such as itaconic acid and cis-aconitic acid, as well as enzymes, like xylanase. It was also the initial source for the drug mevinolin (lovastatin), a drug for lowering serum cholesterol.

<i>Mucor racemosus</i> Species of fungus

Mucor racemosus is a rapidly growing, weedy mould belonging to the division Mucoromycota. It is one of the earliest fungi to be grown in pure culture and was first isolated in 1886. It has a worldwide distribution and colonizes many habitats such as vegetational products, soil and houses. The fungus is mostly known for its ability to exhibit both filamentous and yeast-like morphologies, often referred to as dimorphism. Stark differences are seen in both forms and conditions of the environment heavily affect the phases of the M. racemosus. Like many fungi, it also reproduces both sexually and asexually. The dimorphic capacity of this species has been proposed as an important factor in its pathogenicity and has enhanced the industrial importance. This species is considered an opportunistic pathogen, generally limited to immunocompromised individuals. It also been associated with allergy and inflammations of facial sinuses. Its association with allergy has made it a common fungus used in allergen medical testing. Industrial use of the fungus is in the production of enzymes and the manufacture of certain dairy foods.

Aspergillus ochraceus is a mold species in the genus Aspergillus known to produce the toxin ochratoxin A, one of the most abundant food-contaminating mycotoxins, and citrinin. It also produces the dihydroisocoumarin mellein. It is a filamentous fungus in nature and has characteristic biseriate conidiophores. Traditionally a soil fungus, has now began to adapt to varied ecological niches, like agricultural commodities, farmed animal and marine species. In humans and animals the consumption of this fungus produces chronic neurotoxic, immunosuppressive, genotoxic, carcinogenic and teratogenic effects. Its airborne spores are one of the potential causes of asthma in children and lung diseases in humans. The pig and chicken populations in the farms are the most affected by this fungus and its mycotoxins. Certain fungicides like mancozeb, copper oxychloride, and sulfur have inhibitory effects on the growth of this fungus and its mycotoxin producing capacities.

Aspergillus sydowii is a pathogenic fungus that causes several diseases in humans. It has been implicated in the death of sea fan corals in the Caribbean Sea.

<i>Wallemia sebi</i> Species of fungus

Wallemia sebi is a xerophilic fungus of the phylum Basidiomycota.

Aspergillus penicillioides is a species of fungus in the genus Aspergillus, and is among the most xerophilic fungi.

<i>Aspergillus ustus</i> Species of fungus

Aspergillus ustus is a microfungus and member of the division Ascomycota. It is commonly found in indoor environments and soil. Isolated cases of human infection resulting from A. ustus have been described; however the majority of these are nail infections.

<i>Aspergillus glaucus</i> Species of fungus

Aspergillus glaucus is a filamentous fungus which is known to have a wide environmental distribution due to its physiological hardiness under extreme conditions. Like many other fungi belonging to the genus Aspergillus, it can be mildly pathogenic but has a number of useful potential applications in medicine and the production of foodstuffs.

Aspergillus unguis is a species of fungus in the genus Aspergillus, and the asexual state (anamorph) of Emericella unguis. Aspergillus unguis is a filamentous soil-borne fungus found on decomposing plant matter and other moist substrates including with building materials and household dust. Aspergillus unguis occurs mainly in tropical and subtropical soils but has also been isolated from various marine and aquatic habitats. The species was first isolated in 1935 by Weill and L. Gaudin. Historically, A. unguis was assigned to the A. nidulans group, a common group of soil-borne fungi due to the resemblance of its ascospores and cleistothecia to those of Emericella nidulans. Aspergillus unguis is distinctive, however, in possessing spicular hyphae. A number of synonyms have been collapsed into this species, including Sterigmatocystis unguis, Aspergillus laokiashanensis and Aspergillus mellinus.

<i>Aspergillus clavatus</i> Species of fungus

Aspergillus clavatus is a species of fungus in the genus Aspergillus with conidia dimensions 3–4.5 x 2.5–4.5 μm. It is found in soil and animal manure. The fungus was first described scientifically in 1834 by the French mycologist John Baptiste Henri Joseph Desmazières.

<i>Aspergillus tubingensis</i> Species of fungus

Aspergillus tubingensis is a darkly pigmented species of fungus in the genus Aspergillus section Nigri. It is often confused with Aspergillus niger due to their similar morphology and habitat. A. tubingensis is often involved in food spoilage of fruits and wheat, and industrial fermentation. This species is a rare agent of opportunistic infection.

<i>Aspergillus parasiticus</i> Species of fungus

Aspergillus parasiticus is a fungus belonging to the genus Aspergillus. This species is an unspecialized saprophytic mold, mostly found outdoors in areas of rich soil with decaying plant material as well as in dry grain storage facilities. Often confused with the closely related species, A. flavus, A. parasiticus has defined morphological and molecular differences. Aspergillus parasiticus is one of three fungi able to produce the mycotoxin, aflatoxin, one of the most carcinogenic naturally occurring substances. Environmental stress can upregulate aflatoxin production by the fungus, which can occur when the fungus is growing on plants that become damaged due to exposure to poor weather conditions, during drought, by insects, or by birds. In humans, exposure to A. parasiticus toxins can cause delayed development in children and produce serious liver diseases and/or hepatic carcinoma in adults. The fungus can also cause the infection known as aspergillosis in humans and other animals. A. parasiticus is of agricultural importance due to its ability to cause disease in corn, peanut, and cottonseed.

Ulocladium botrytis is an anamorphic filamentous fungus belonging to the phylum Ascomycota. Commonly found in soil and damp indoor environments, U.botrytis is a hyphomycetous mould found in many regions of the world. It is also occasionally misidentified as a species of the genera Alternaria or Pithomyces due to morphological similarities. Ulocladium botrytis is rarely pathogenic to humans but is associated with human allergic responses and is used in allergy tests. Ulocladium botrytis has been implicated in some cases of human fungal nail infection. The fungus was first discovered in 1851 by German mycologist Carl Gottlieb Traugott Preuss.

Aspergillus wentii is an asexual, filamentous, endosymbiotic fungus belonging to the mold genus, Aspergillus. It is a common soil fungus with a cosmopolitan distribution, although it is primarily found in subtropical regions. Found on a variety of organic materials, A. wentii is known to colonize corn, cereals, moist grains, peanuts and other ground nut crops. It is also used in the manufacture of biodiesel from lipids and is known for its ability to produce enzymes used in the food industry.

Botryotrichum piluliferum is a fungal species first identified in 1885 by Saccardo and Marchal. It was discovered to be the asexual state of a member of the ascomycete genus, Chaetomium. The name B. piluliferum now applies to the fungus in all its states. B. piluliferum has been found worldwide in a wide range of habitats such as animal dung and vegetation. The colonies of this fungus start off white and grow rapidly to a brown colour. The conidia are smooth and white. B. piluliferum grows optimally at a temperature of 25-30 °C and a pH of 5.5.

Aspergillus giganteus is a species of fungus in the genus Aspergillus that grows as a mold. It was first described in 1901 by Wehmer, and is one of six Aspergillus species from the Clavati section of the subgenus Fumigati. Its closest taxonomic relatives are Aspergillus rhizopodus and Aspergillus longivescia.

Aspergillus carneus is a fast-growing, filamentous fungus found on detritus and in fertile soil worldwide. It is characterized by its yellow, thick-walled hyphae and biseriate sterigmata. The fungus produces citrinin and 5 unique depsipeptides, Aspergillicins A-E.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 "Aspergillus versicolor". MycoBank. Retrieved 17 October 2013.
  2. "Aspergillus versicolor". Doctor Fungus. Archived from the original on 21 August 2013. Retrieved 17 October 2013.
  3. Bjurman, J; Kristensson, J (June 1992). "Volatile production by Aspergillus versicolor as a possible cause of odor in houses affected by fungi". Mycopathologia. 118 (3): 173–178. doi:10.1007/BF00437151. S2CID   25079049.
  4. Englehart, Steffen; Annette Loock; Dirk Shutlarek; Helmut Sagunski; Annette Lommel; Harald Farber; Martin Exner (August 2012). "Occurrence of Toxigenic Aspergillus versicolor isolates and sterigmatocystin in carpet dust from damp indoor environments". Applied and Environmental Microbiology. 68 (8): 3886–3890. doi:10.1128/AEM.68.8.3886-3890.2002. PMC   124040 . PMID   12147486.
  5. 1 2 "Aspergillus versicolor". Fungal Genomics Program. Retrieved 17 October 2013.
  6. 1 2 3 Fomicheva, FM; Vasilenko OV; Marfenina OE (March 2006). "Comparative morphological, ecological, and molecular studies of Aspergillus verseicolor (Vuill.) Tiraboschi strains isolated from different ecotopes". Microbiology. 75 (2): 186–191. doi:10.1134/S0026261706020123. S2CID   28377806.
  7. Liang, Yinan; Wendy Zhao; Jiangping Xu; David Miller (January 2011). "Characterization of two related exoantigens from the biodeteriogenic fungus Aspergillus versicolor". International Biodeterioration & Biodegradation. 65 (1): 217–226. doi:10.1016/j.ibiod.2010.11.005.
  8. 1 2 3 Nielsen, KF (March 2003). "Mycotoxin production by indoor molds". Fungal Genetics and Biology. 39 (2): 103–17. doi:10.1016/S1087-1845(03)00026-4. PMID   12781669.
  9. 1 2 Pasanen, Pertti; Anne Korpi; Pentti Kalliokoski; Anna-Liisa Pasanen (January 1997). "Growth and volatile metabolite production of Aspergillus versicolor in house dust". Environment International. 23 (4): 425–432. doi:10.1016/S0160-4120(97)00027-5.
  10. 1 2 3 4 Domsch, Klaus H. (2007). Compendium of soil fungi. p.  97. Bibcode:1982Geode..28...63M. doi:10.1016/0016-7061(82)90042-8. ISBN   9780122204012.{{cite book}}: |journal= ignored (help)
  11. Pettersson, Olga (2011). "Fungal Xerophiles (Osmophiles)". ELS. John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0000376.pub2. ISBN   978-0470016176.
  12. 1 2 "Aspergillus versicolor". MycoCosm: The Fungal Genomics Resource. Retrieved 17 October 2013.
  13. Kis-Papo, T; A. Oren; S.P. Wasser; E. Nevo (January 2003). "Survival of filamentous fungi in hypersaline Dead Sea water". Microbial Ecology. 45 (2): 183–190. doi:10.1007/s00248-002-3006-8. PMID   12545316. S2CID   24597888.
  14. Jeya, M.; S. Thiagarajan; J. Lee; P. Gunasekaran (February 2009). "Identification of New GH 10 and GH 11 Xylanase Genes from Aspergillus versicolor MKU3 by Genome-Walking PCR". Biotechnology and Bioprocess Engineering. 14 (1): 13–19. doi:10.1007/s12257-008-0112-6. S2CID   85674307.
  15. 1 2 Lee, Yoon Mi; Yoon Mi Lee; Min Jeong Kim; Huayue Li; Ping Zhang; Baoquan Bao; Ka Jeong Lee; Jee H. Jung (May 2013). "Marine-Derived Aspergillus Species as a Source of Bioactive Secondary Metabolites". Marine Biotechnology. 15 (5): 499–519. doi:10.1007/s10126-013-9506-3. PMID   23709045. S2CID   18389985.
  16. Torres-Rodriguez, JM; Madrenys-Brunet, N; Siddat, M; Lopez-Jodra, O; Jimenez, T (July 1998). "Aspergillus versicolor as cause of onychomycosis: report of 12 cases and susceptibility testing to antifungal drugs". Journal of the European Academy of Dermatology and Venereology. 11 (1): 25–31. doi:10.1111/j.1468-3083.1998.tb00949.x. PMID   9731962. S2CID   24627613.
  17. Benndorf, D; A Muller; K Bock; O Manuwald; O Herbarth; M von Bergen (April 2008). "Identification of spore allergens from the indoor mould Aspergillus versicolor". Allergy. 63 (3): 454–60. doi:10.1111/j.1398-9995.2007.01603.x. PMID   18315733. S2CID   29393258.
  18. Shi, C.; JD Miller (May 2011). "Characterization of the 41 kDa allergen Asp v 13, a subtilisin-like serine protease from Aspergillus versicolor". Molecular Immunology. 48 (15–16): 1827–1834. doi:10.1016/j.molimm.2011.05.010. PMID   21632114.
  19. Reijula, K; T Tuomi (May 2003). "Mycotoxins of Aspergilli; Exposure and health effects". Frontiers in Bioscience. 8 (5): s232-5. doi: 10.2741/978 . PMID   12700107. Free full text
  20. Bairagi, HImadri; Motiar Khan; Lalitagauri Ray; Arun Guha (February 2011). "Adsorption profile of lead on Aspergillus versicolor: A mechanistic probing". Journal of Hazardous Materials. 186 (1): 756–64. doi:10.1016/j.jhazmat.2010.11.064. PMID   21159429.
  21. Carmona, Eleonara; MB Fialha; EB Buchgnani; GD Coelho; MR Brocheto-Braga; JA Jorge (January 2005). "Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor". Process Biochemistry. 40 (1): 359–364. doi:10.1016/j.procbio.2004.01.010.