Aspergillomarasmine A

Last updated
Aspergillomarasmine A
Aspergillomarasmine A.svg
Names
IUPAC name
(R-(R*,R*))-N-(2-((2-Amino-2-carboxyethyl)amino)-2-carboxyethyl)-L-aspartic acid[ citation needed ]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C10H17N3O8/c11-4(8(16)17)2-12-6(10(20)21)3-13-5(9(18)19)1-7(14)15/h4-6,12-13H,1-3,11H2,(H,14,15)(H,16,17)(H,18,19)(H,20,21)/t4-,5+,6-/m1/s1
    Key: XFTWUNOVBCHBJR-NGJCXOISSA-N
  • C(C(C(=O)O)NCC(C(=O)O)NCC(C(=O)O)N)C(=O)O
Properties
C10H17N3O8
Molar mass 307.257
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Aspergillomarasmine A is an polyamino acid naturally produced by the mold Aspergillus versicolor . The substance has been reported to inhibit two antibiotic resistance carbapenemase proteins in bacteria, New Delhi metallo-beta-lactamase 1 (NDM-1) and Verona integron-encoded metallo-beta-lactamase (VIM-2), and make those antibiotic-resistant bacteria susceptible to antibiotics. [1] Aspergillomarasmine A is toxic to leaves of barley and other plants, being termed as "Toxin C" when produced by Pyrenophora teres . [2]

The molecule is a tetracarboxylic acid with four -COOH groups. One section of the molecule is the amino acid aspartic acid. This has two alanine [ contradictory ] molecules attached by substituting a hydrogen on the methyl group with a link to the amine group. Aspergillomarasmine B differs in that the last alanine is replaced by glycine.

The crystalline substance was first isolated in 1956, but its name was given until 1965. [3]

In addition to Aspergillus versicolor, aspergillomarasmine A is also produced by the ascomycete Pyrenophora teres where it acts as a toxin in the barley net-spot blotch disease. In P. teres, a biosynthetic precursor of aspergillomarasmine A, L,L-N-(2-amino-2-carboxyethyl)-aspartic acid has also been isolated and found to contribute to the phytotoxic properties of this microbe. [4] This precursor, aspergillomarasmine A itself, and a lactam form (anhydroaspergillomarasmine A) are together termed the marasmines. [2]

Other producers of aspergillomarasmine A include Aspergillus flavus , [3] Aspergillus oryzae , [5] Colletotrichum gloeosporioides , and Fusarium oxysporum . [2]

In mice the LD50 toxic dose of aspergillomarasmine A is 159.8 mg/kg. [6]

Properties

Aspergillomarasmine A takes the form of colourless crystals. The chemical is insoluble in common organic solvents, but can dissolve in water under either basic or strongly acidic conditions. [3]

Anhydroaspergillomarasmine A, a lactam of aspergillomarasmine A, chemically called [1-(2-amino-2carboxyethyl)-6-carboxy-3-carboxymethyl-3-piperazinone], can also be found in Pyrenophora teres. The relative amount of these two toxins is dependent upon the pH of the growth medium, with lower pH favouring the lactam form. [2] The lactam can be hydrolyzed to aspergillomarasmine A by treating it with trifluoroacetic acid. [2]

Aspergillomarasmine A functions as a chelating agent, sequestering Fe3+ ions. [7] It can inhibit endothelin converting enzymes even in the live rat, probably by chelating metals required by metalloproteases. [8]

When heated, aspergillomarasmine A decomposes between 225° and 236 °C. Hydrolysis produces L-aspartic acid and racemic[ why? ] 2,3-diaminopropionic acid. Even though the precursor component is chiral, 2,3-diaminopropionic acid easily racemizes in acid. [3]

Aspergillomarasmine A has [α]20°D at pH 7 of -48°. [3]

With nitrous acid aspergillomarasmine A is deaminated,[ clarification needed ] and isoserine with aspartic acid is formed. [3]

Titration reveals changes in ionisation at pK 3.5 and 4.5 due to carboxylic acid groups, and pK 9.5 and 10 due to amino groups. [3] [ clarification needed ]

Treatment with ninhydrin shows a purple colour. [3]

Related Research Articles

<span class="mw-page-title-main">Beta-lactam</span> Family of chemical compounds

A beta-lactam (β-lactam) ring is a four-membered lactam. A lactam is a cyclic amide, and beta-lactams are named so because the nitrogen atom is attached to the β-carbon atom relative to the carbonyl. The simplest β-lactam possible is 2-azetidinone. β-lactams are significant structural units of medicines as manifested in many β-lactam antibiotics Up to 1970, most β-lactam research was concerned with the penicillin and cephalosporin groups, but since then, a wide variety of structures have been described.

<span class="mw-page-title-main">Beta-lactamase</span> Class of enzymes

Beta-lactamases (β-lactamases) are enzymes produced by bacteria that provide multi-resistance to beta-lactam antibiotics such as penicillins, cephalosporins, cephamycins, monobactams and carbapenems (ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a beta-lactam (β-lactam) ring. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.

<span class="mw-page-title-main">Penicillin</span> Group of antibiotics derived from Penicillium fungi

Penicillins are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation and then purified. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

<span class="mw-page-title-main">Beta-lactam antibiotics</span> Class of broad-spectrum antibiotics

β-lactam antibiotics are antibiotics that contain a beta-lactam ring in their chemical structure. This includes penicillin derivatives (penams), cephalosporins and cephamycins (cephems), monobactams, carbapenems and carbacephems. Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. Until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds. The first β-lactam antibiotic discovered, penicillin, was isolated from a strain of Penicillium rubens.

<span class="mw-page-title-main">Methicillin</span> Antibiotic medication

Methicillin (USAN), also known as meticillin (INN), is a narrow-spectrum β-lactam antibiotic of the penicillin class.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

A metalloproteinase, or metalloprotease, is any protease enzyme whose catalytic mechanism involves a metal. An example is ADAM12 which plays a significant role in the fusion of muscle cells during embryo development, in a process known as myogenesis.

<span class="mw-page-title-main">DD-transpeptidase</span>

DD-transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-αα-D-alanyl moiety of R-L-αα-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

<span class="mw-page-title-main">Meropenem</span> Broad-spectrum antibiotic

Meropenem, sold under the brand name Merrem among others, is an intravenous β-lactam antibiotic used to treat a variety of bacterial infections. Some of these include meningitis, intra-abdominal infection, pneumonia, sepsis, and anthrax.

<span class="mw-page-title-main">Clavulanic acid</span> Β-lactam molecule used as β-lactamase inhibitor to overcome antibiotic resistance in bacteria

Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.

<span class="mw-page-title-main">Penicillin-binding proteins</span> Class of proteins

Penicillin-binding proteins (PBPs) are a group of proteins that are characterized by their affinity for and binding of penicillin. They are a normal constituent of many bacteria; the name just reflects the way by which the protein was discovered. All β-lactam antibiotics bind to PBPs, which are essential for bacterial cell wall synthesis. PBPs are members of a subgroup of enzymes called transpeptidases. Specifically, PBPs are DD-transpeptidases.

β-Lactamase inhibitor Family of enzymes

Beta-lactamases are a family of enzymes involved in bacterial resistance to beta-lactam antibiotics. In bacterial resistance to beta-lactam antibiotics, the bacteria have beta-lactamase which degrade the beta-lactam rings, rendering the antibiotic ineffective. However, with beta-lactamase inhibitors, these enzymes on the bacteria are inhibited, thus allowing the antibiotic to take effect. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors called beta-lactamase inhibitors. Although β-lactamase inhibitors have little antibiotic activity of their own, they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.

<span class="mw-page-title-main">Isopenicillin N synthase</span>

Isopenicillin N synthase (IPNS) is a non-heme iron protein belonging to the 2-oxoglutarate (2OG)-dependent dioxygenases oxidoreductase family. This enzyme catalyzes the formation of isopenicillin N from δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (LLD-ACV).

<span class="mw-page-title-main">Metallo-beta-lactamase protein fold</span>

The metallo-β-lactamase (MBL) superfamily constitutes a group of proteins found in all domains of life that share a characteristic αββα fold with the ability to bind transition metal ions. Such metal binding sites may have divalent transition metal ions like Zn(II), Fe(II)/Fe(III) and Mn(II), and are located at the bottom of a wide cleft able to accommodate diverse substrates. The name was adopted after the first members of the superfamily to be studied experimentally: a group of zinc-dependent hydrolytic enzymes conferring bacterial resistance to β-lactam antibiotics. These zinc-β-lactamases (ZBLs) inactivate β-lactam antibiotics through hydrolysis of the β-lactam ring. Early studies on MBLs were conducted on the enzyme βLII isolated from strain 569/H/9 of Bacillus cereus. It was named βLII because it was the second β-lactamase shown to be produced by the bacterium; the first one, βLI, was a non-metallic β-lactamase, i.e., insensitive to inhibition with EDTA.

<span class="mw-page-title-main">Tabtoxin</span> Chemical compound

Tabtoxin, also known as wildfire toxin, is a simple monobactam phytotoxin produced by Pseudomonas syringae. It is the precursor to the antibiotic tabtoxinine β-lactam (TBL). It is produced by:

<span class="mw-page-title-main">New Delhi metallo-beta-lactamase 1</span> Enzyme

NDM-1 is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotics. These include the antibiotics of the carbapenem family, which are a mainstay for the treatment of antibiotic-resistant bacterial infections. The gene for NDM-1 is one member of a large gene family that encodes beta-lactamase enzymes called carbapenemases. Bacteria that produce carbapenemases are often referred to in the news media as "superbugs" because infections caused by them are difficult to treat. Such bacteria are usually sensitive only to polymyxins and tigecycline.

Cephalosporins are a broad class of bactericidal antibiotics that include the β-lactam ring and share a structural similarity and mechanism of action with other β-lactam antibiotics. The cephalosporins have the ability to kill bacteria by inhibiting essential steps in the bacterial cell wall synthesis which in the end results in osmotic lysis and death of the bacterial cell. Cephalosporins are widely used antibiotics because of their clinical efficiency and desirable safety profile.

<span class="mw-page-title-main">Avibactam</span> Chemical compound

Avibactam is a non-β-lactam β-lactamase inhibitor developed by Actavis jointly with AstraZeneca. A new drug application for avibactam in combination with ceftazidime was approved by the FDA on February 25, 2015, for treating complicated urinary tract (cUTI) and complicated intra-abdominal infections (cIAI) caused by antibiotic resistant-pathogens, including those caused by multi-drug resistant Gram-negative bacterial pathogens.

<span class="mw-page-title-main">LACTB2</span> Protein-coding gene in the species Homo sapiens

Lactamase, beta 2 is a protein that in humans is encoded by the LACTB2 gene.

<span class="mw-page-title-main">Vaborbactam</span> Chemical compound

Vaborbactam (INN) is a non-β-lactam β-lactamase inhibitor discovered by Rempex Pharmaceuticals, a subsidiary of The Medicines Company. While not effective as an antibiotic by itself, it restores potency to existing antibiotics by inhibiting the β-lactamase enzymes that would otherwise degrade them. When combined with an appropriate antibiotic it can be used for the treatment of gram-negative bacterial infections.

References

  1. King, Andrew M.; Sarah A. Reid-Yu; Wenliang Wang; Dustin T. King; Gianfranco De Pascale; Natalie C. Strynadka; Timothy R. Walsh; Brian K. Coombes; Gerard D. Wright (2014). "Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance". Nature. 510 (7506): 503–506. Bibcode:2014Natur.510..503K. doi:10.1038/nature13445. ISSN   0028-0836. PMC   4981499 . PMID   24965651.
  2. 1 2 3 4 5 Weiergang, I.; H.J. Lyngs Jørgensen; I.M. Møller; P. Friis; V. Smedegaard-Petersen (2002). "Optimization of in vitro growth conditions of Pyrenophora teres for production of the phytotoxin aspergillomarasmine A". Physiological and Molecular Plant Pathology. 60 (3): 131–140. doi:10.1006/pmpp.2002.0383. ISSN   0885-5765.
  3. 1 2 3 4 5 6 7 8 Haenni, A. L.; M. Robert; W. Vetter; L. Roux; M. Barbier; E. Lederer (1965). "Structure chimique des aspergillomarasmines A et B" [Chemical structure of aspergellomarasmines A and B]. Helvetica Chimica Acta (in French). 48 (4): 729–750. doi:10.1002/hlca.19650480409. ISSN   0018-019X. PMID   14321962.
  4. Friis, P; Olsen C.E.; Møller B.L. (15 July 1991). "Toxin production in Pyrenophora teres, the ascomycete causing the net-spot blotch disease of barley (Hordeum vulgare L.)". The Journal of Biological Chemistry. 266 (20): 13329–13335. doi: 10.1016/S0021-9258(18)98843-5 . PMID   2071605.
  5. Wagman, G.H.; Cooper, R. (1988-12-01). Natural Products Isolation: Separation Methods for Antimicrobials, Antivirals and Enzyme Inhibitors. Elsevier. p. 499. ISBN   9780080858487 . Retrieved 27 June 2014.
  6. Matsuura, Akihiro; Hiroshi Okumura; Rieko Asakura; Naoki Ashizawa; Mayumi Takahashi; Fujio Kobayashi; Nami Ashikawa; Koshi Arai (1993). "Pharmacological profiles of aspergillomarasmines as endothelin converting enzyme inhibitors". The Japanese Journal of Pharmacology. 63 (2): 187–193. doi: 10.1254/jjp.63.187 . PMID   8283829.
  7. Barbier, M. (1987). "Remarks on the biological activity of aspergillomarasmine A Fe3+ chelate and other iron transporting phytotoxins with reference to their role in the photodegradation of aromatic amino-acids in infected plant leaves". Journal of Phytopathology. 120 (4): 365–368. doi:10.1111/j.1439-0434.1987.tb00500.x. ISSN   0931-1785.
  8. Huggins, John P.; Pelton, John T. (1996-12-23). Endothelins in Biology and Medicine. CRC Press. p. 121. ISBN   9780849369759 . Retrieved 27 June 2014.