Pyrenophora teres

Last updated

Contents

Pyrenophora teres
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Pleosporales
Family: Pleosporaceae
Genus: Pyrenophora
Species:
P. teres
Binomial name
Pyrenophora teres
Drechs. (1923)
Synonyms [1]
  • Drechslera teres(Sacc.) Shoemaker, Can. J. Bot. 37(5): 881 (1959)
  • Drechslera teres f. maculataSmed.-Pet., Arb. Tiflis Bot. Gard.: 139 (1971)
  • Helminthosporium hordeiEidam, Der Landw. (Schles. Landw. Ztg), Breslau 27: 509 (1891)
  • Helminthosporium teresSacc., Syll. fung. (Abellini) 4: 412 (1886)
  • Pyrenophora teres f. maculataSmed.-Pet., The Royal Veterinary and Agricultural University Yearbook: 139 (1971)

Pyrenophora teres is a necrotrophic fungal pathogen of some plant species, the most significant of which are economically important agricultural crops such as barley. Toxins include aspergillomarasmine A and related compounds. [2]

Host & symptoms

Pyrenophora teres is a plant pathogen that causes net blotch on barley (Hordeum vulgare). It is a disease that is distributed worldwide, and can be found in all regions where barley is grown. [3] Two economically significant forms of the pathogen exist, P. teres f. teres and P. teres f. maculata , which give rise to net form of net blotch and spot form of net blotch, respectively. The distinction comes not from morphology, which is essentially the same in each, but rather by the differing manifestation of symptoms upon the infection of a host. [4] Both forms induce chlorosis and necrosis, but the presentation of these symptoms, especially the shape and spread of necrotic lesions, is how they are distinguished. [5]

The symptoms of both forms of P. teres are similar in that they begin with pin-sized brown necrotic spots on the lamia and sheath of the leaves (the most common infection court), and sometimes on the flowers and grains. [6] Over time, these lesions increase in size, eventually diverging in shape. The legions caused by P. teres f. teres, causal agent of the net form of net blotch, elongate and move laterally across the leaf surface, forming characteristic dark-brown streaks that merge in order to create the net-like pattern for which the form is named. These lesions continue to extend as they age, the margins of which are often surrounded by a chlorotic halo. [4] [6]

Barley plants infected by P. teres f. maculata, causal agent of the spot form of net blotch, [7] do not exhibit net-like patterns of necrosis. Instead, the initial pin-point dots grow in both height and width, forming larger circular or elliptical spots, generally 3–6 mm in diameter. As these spots increase in size, they become surrounded by a chlorotic zone which tends to vary in width. [8] In severe cases, these necrotic and chlorotic zones can extend to such a width that they combine and destroy the entire leaf. With spot form of net blotch, symptoms have been observed to appear on a continuum based upon the strength of the resistance of the variety: those that are completely resistant have lesions that do not grow past the initial pin-point size; as the resistance decreases, the size of the lesions increase. The biological basis of this difference originates from the way in which each form infects; P. teres f. maculata grows more slowly and thus the necrosis remains relatively localized at initial infection zone, whereas P. teres f. teres grows more quickly and extensively at the sub-epidermal level, extending the necrosis further from the initial infection zone. [6]

Disease cycle

Although the symptoms they present are distinct, P. teres f. teres and P. teres f. maculata have essentially the same life cycle, [4] the only difference being the absence of seed dispersal stage in the latter, so the spot form of the disease is unable to overwinter in barley seed. Pseudothecia that overwinter on infected barley stubble and act as the primary inoculum. These appear as dark, 1–2 mm spherical structures with septate setae on the surface of plant debris, which, during cool and moist conditions, mature and produce ascospores that are dispersed by wind and rain, thereby colonizing the leaves of new barley hosts. [6] While healthier leaves have been observed to be more quickly infected than older ones, P. teres has been shown to infect barley at any growth stage. [3] Germination of the ascospores can occur in as little as a few hours, [4] during which an appressorium with a penetration peg develops to perforate the cell wall, forming an “intracellular infection vesicle”. [6] While the penetration most often occurs in epidermal cells, P. teres has also been shown to penetrate between epidermal cells and, more rarely, through stomata. Within 24 hours, pin-sized brown lesions occur at the initial infection site, which extend as the fungus matures. [4]

The fungus grows and populates the host tissue, and after 14–20 days conidia are formed. The conidia are dispersed through wind and rain, and act as the secondary inoculum, creating a polycyclic disease cycle. [6] Once a host is found, the conidia germinate and form germ tubes with a club-shaped appressorium that penetrates the cell wall and initiates a new infection. These conidia have the ability to infect plants in both the site in which they are formed, as well as neighboring fields if they travel far enough.

The severity of the pathogen's spread relies heavily upon certain environmental factors, as the conidia require specific temperature (10-25 degrees Celsius), [6] relative humidity (95-100%), and leaf wetness for dispersal and germination. [4] As long as the environmental conditions are suitable many secondary disease cycles can occur, resulting in potentially devastating infection rates if the cultivated barley is of a susceptible variety. [6] [4] Pseudothecia are formed by mycelia in necrotic tissue at the end of the season in order to facilitate overseason survival and the re-initiation of the disease cycle when conditions are once again favorable. [4]

In P. teres f. teres, seed-borne mycelium can also act as the primary inoculum; however, this is much less common than is the infection from pathogenic pseudothecia overwintered in barley stubble. [9] In the same vein, volunteer barley plants and those closely related to barley, such as barley grass, wheat, and oat, can be infected through mycelia or conidia and become an inoculum source: the extent to which this affects the spread of the disease is unknown. Plant debris, however, remains the primary source by which barley is infected. [6]

Disease management

Pyrenophora teres is most effectively controlled using a combination of cultural and chemical means, in addition to host resistance. [4] An integrated approach is suggested due to the occurrence of frequent genetic recombination, which can quickly make some fungicides obsolete, and cause previously resistant barley cultivars in a region to succumb. [6]

Host resistance

Cultivating resistant varieties is seen as the vanguard of combating P. teres, and it has the best effects on long-term disease management. [4] By knowing what form of the pathogen is present in a specific region and growing cultivars that are resistant to that form, fungicide application can be greatly decreased or terminated. Decreased fungicide use has three positive effects: monetary input by the farmer is decreased because fewer fungicides are purchased and less labor is required to apply them, there is a lower possibility of chemical contamination of the environment, and the possibility of neighboring crops being infected is decreased. The presence of P. teres must be closely monitored, however: although generally only one form is dominant in a region, this dominance is not permanent, and forms have been known to essentially switch places over time for a variety of known and unknown reasons. If a cultivar that is only resistant to one form is grown and the other form appears and epidemic could possibly occur. [6]

Cultural practices

Cultural management practices generally work to reduce the primary inoculum source (the pseudothecia) present in barley stubble [4] through destruction the residual debris and through crop rotation. Crop rotation is beneficial, as P. teres primarily infects Hordeum vulgare. Similarly, the destruction of volunteer plants is suggested on sites where they may pose a problem. This often has a residual benefit of reducing possible infections from other pathogens that may also be on the volunteer plant, such as rust. Good crop nutrition to promote healthy plants that are more resistant to disease and delayed sowing can also be used to bolster the effects of other management practices, but these are not adequate enough to be used as the sole means of control. [6]

Chemical control

In environments where host resistance and cultural practices are not sufficient to manage the pathogen, foliar fungicides can be applied. [4] An effective strategy is to apply fungicide to only the top leaves at predetermined points in the plant's growing cycle, generally at flag leaf emergence, in order to target both the primary inoculum and, in that way, to minimize or eradicate the ability of the pathogen to produce a secondary inoculum. This protects both the main sites of photosynthesis (roughly the top four leaves) as well as the flag leaf and emerging ears, which provide the crop yield. According to one study, in which the disease was present in moderate severity, “pyraclostrobin, propiconazole and a mixture of propiconazole with iprodione were the most effective at controlling [the disease], as well as improving grain yield and quality”. [6] Herbicides may also be used to eliminate volunteer plants that can act as a source of inoculum. [4]

Role of reactive oxygen species

During plant-fungal interactions involving Pyrenophora, resistant and susceptible varieties of barley display differential levels of reactive oxygen species production. This implicates ROS as having a central role in plant resistance, along with their regulators, known as ROS scavengers

Related Research Articles

<span class="mw-page-title-main">Black rot (grape disease)</span> Species of fungus

Grape black rot is a fungal disease caused by an ascomycetous fungus, Guignardia bidwellii, that attacks grape vines during hot and humid weather. “Grape black rot originated in eastern North America, but now occurs in portions of Europe, South America, and Asia. It can cause complete crop loss in warm, humid climates, but is virtually unknown in regions with arid summers.” The name comes from the black fringe that borders growing brown patches on the leaves. The disease also attacks other parts of the plant, “all green parts of the vine: the shoots, leaf and fruit stems, tendrils, and fruit. The most damaging effect is to the fruit”.

Scald is common disease of barley in temperate regions. It is caused by the fungus Rhynchosporium commune and can cause significant yield losses in cooler, wet seasons.

Spot blotch is a disease of barley caused by Cochliobolus sativus. The disease is found everywhere that barley is grown, but only causes significant yield losses in warm, humid climates.

Leptosphaeria coniothyrium is a plant pathogen. It can be found around the world.

Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.

<i>Pyrenophora tritici-repentis</i> Species of fungus

Pyrenophora tritici-repentis (teleomorph) and Drechslera tritici-repentis (anamorph) is a necrotrophic plant pathogen of fungal origin, phylum Ascomycota. The pathogen causes a disease originally named yellow spot but now commonly called tan spot, yellow leaf spot, yellow leaf blotch or helminthosporiosis. At least eight races of the pathogen are known to occur based on their virulence on a wheat differential set.

<i>Zymoseptoria tritici</i> Species of fungus

Zymoseptoria tritici, synonyms Septoria tritici, Mycosphaerella graminicola, is a species of filamentous fungus, an ascomycete in the family Mycosphaerellaceae. It is a wheat plant pathogen causing septoria leaf blotch that is difficult to control due to resistance to multiple fungicides. The pathogen today causes one of the most important diseases of wheat.

<i>Podosphaera macularis</i> Species of fungus

Podosphaera macularis is a plant pathogen infecting several hosts including chamomile, caneberrie, strawberries, hop, hemp and Cineraria. It causes powdery mildew of hops.

<i>Stemphylium solani</i> Species of fungus

Stemphylium solani is a plant pathogen fungus in the phylum Ascomycota. It is the causal pathogen for grey leaf spot in tomatoes and leaf blight in alliums and cotton, though a wide range of additional species can serve as hosts. Symptoms include white spots on leaves and stems that progress to sunken red or purple lesions and finally leaf necrosis. S. solani reproduces and spreads through the formation of conidia on conidiophores. The teleomorph name of Stemphyllium is Pleospora though there are no naturally known occurrences of sexual reproduction. Resistant varieties of tomato and cotton are common, though the pathogen remains an important disease in Chinese garlic cultivation.

<i>Diaporthe helianthi</i> Species of fungus

Diaporthe helianthi is a fungal pathogen that causes Phomopsis stem canker of sunflowers. In sunflowers, Phomopsis helianthi is the causative agent behind stem canker. Its primary symptom is the production of large canker lesions on the stems of sunflower plants. These lesions can eventually lead to lodging and plant death. This disease has been shown to be particularly devastating in southern and eastern regions of Europe, although it can also be found in the United States and Australia. While cultural control practices are the primary method of controlling for Stem Canker, there have been a few resistant cultivars developed in regions of Europe where the disease is most severe.

<i>Ascochyta</i> Genus of fungi

Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.

Cercospora arachidicola is a fungal ascomycete plant pathogen that causes early leaf spot of peanut. Peanuts originated in South America and are cultivated globally in warm, temperate and tropical regions.

<i>Didymella bryoniae</i> Species of fungus

Didymella bryoniae, syn. Mycosphaerella melonis, is an ascomycete fungal plant pathogen that causes gummy stem blight on the family Cucurbitaceae, which includes cantaloupe, cucumber, muskmelon and watermelon plants. The anamorph/asexual stage for this fungus is called Phoma cucurbitacearum. When this pathogen infects the fruit of cucurbits it is called black rot.

Peronosclerospora sorghi is a plant pathogen. It is the causal agent of sorghum downy mildew. The pathogen is a fungal-like protist in the oomycota, or water mold, class. Peronosclerospora sorghi infects susceptible plants though sexual oospores, which survive in the soil, and asexual sporangia which are disseminated by wind. Symptoms of sorghum downy mildew include chlorosis, shredding of leaves, and death. Peronosclerospora sorghi infects maize and sorghum around the world, but causes the most severe yield reductions in Africa. The disease is controlled mainly through genetic resistance, chemical control, crop rotation, and strategic timing of planting.

<i>Septoria malagutii</i> Species of fungus

Septoria malagutii is a fungal plant pathogen infecting potatoes. The casual fungal pathogen is a deuteromycete and therefore has no true sexual stage. As a result, Septoria produces pycnidia, an asexual flask shaped fruiting body, on the leaves of potato and other tuber-bearing spp. causing small black to brown necrotic lesions ranging in size from 1-5mm. The necrotic lesions can fuse together forming large necrotic areas susceptible to leaf drop, early senescence, dieback, and dwarfing. Septoria malagutii has been found only in the Andean countries of Bolivia, Ecuador, Peru, and Venezuela at altitudes of near 3000 meters. Consequently, the fungi grows and disperses best under relatively low temperatures with high humidities, with optimal growth occurring at 20 °C (68 °F). The disease has caused devastation on potato yields in South America and in areas where this disease is common, potato yields have been seen to drop by 60%.

<span class="mw-page-title-main">Ascochyta diseases of pea</span>

Ascochyta blights occur throughout the world and can be of significant economic importance. Three fungi contribute to the ascochyta blight disease complex of pea. Ascochyta pinodes causes Mycosphaerella blight. Ascochyta pinodella causes Ascochyta foot rot, and Ascochyta pisi causes Ascochyta blight and pod spot. Of the three fungi, Ascochyta pinodes is of the most importance. These diseases are conducive under wet and humid conditions and can cause a yield loss of up to fifty percent if left uncontrolled. The best method to control ascochyta blights of pea is to reduce the amount of primary inoculum through sanitation, crop-rotation, and altering the sowing date. Other methods—chemical control, biological control, and development of resistant varieties—may also be used to effectively control ascochyta diseases.

<span class="mw-page-title-main">Northern corn leaf blight</span> Fungal disease of maize plants

Northern corn leaf blight (NCLB) or Turcicum leaf blight (TLB) is a foliar disease of corn (maize) caused by Exserohilum turcicum, the anamorph of the ascomycete Setosphaeria turcica. With its characteristic cigar-shaped lesions, this disease can cause significant yield loss in susceptible corn hybrids.

<i>Botrytis squamosa</i> Species of fungus which can damage onion crops

Botrytis squamosa is a fungus that causes leaf blight on onion that is distinctly characterized by the two stages – leaf spotting followed by blighting. The pathogen is an ascomycete that belongs to the family Sclerotiniaceae in the order Helotiales. The lesions start out as whitish streaks and take on a yellow tinge as they mature. They cause yield losses up to 30%. This fungus is endemic to the USA and has also been reported in Europe, Asia, and Australia. Typical management of this disease includes chemical fungicides with significant efforts being made to establish a means of biological control.

<span class="mw-page-title-main">Alternaria leaf spot</span> Fungal plant disease

Alternaria leaf spot or Alternaria leaf blight are a group of fungal diseases in plants, that have a variety of hosts. The diseases infects common garden plants, such as cabbage, and are caused by several closely related species of fungi. Some of these fungal species target specific plants, while others have been known to target plant families. One commercially relevant plant genus that can be affected by Alternaria Leaf Spot is Brassica, as the cosmetic issues caused by symptomatic lesions can lead to rejection of crops by distributors and buyers. When certain crops such as cauliflower and broccoli are infected, the heads deteriorate and there is a complete loss of marketability. Secondary soft-rotting organisms can infect stored cabbage that has been affected by Alternaria Leaf Spot by entering through symptomatic lesions. Alternaria Leaf Spot diseases that affect Brassica species are caused by the pathogens Alternaria brassicae and Alternaria brassicicola.

Phyllachora maydis is a plant pathogen causing ascomycete diseases in maize/corn, and is more commonly referred to as tar spot. Identified by the distinctive development of stroma, this pathogen in itself is of little economic importance in the production of corn. However, the accompanying fungal infection of Monographella maydis, identified by “fish-eye” lesions, was claimed to cause significant foliar damage and subsequently yield reduction. As of 2021 there is insufficient information about this pathogen and its management.

References

  1. "Species Fungorum - GSD Species". www.speciesfungorum.org. Retrieved 8 August 2023.
  2. Friis P, Olsen CE, Møller BL (1991). "Toxin production in Pyrenophora teres, the ascomycete causing the net-spot blotch disease of barley (Hordeum vulgare L.)". Journal of Biological Chemistry. 266 (20): 13329–13335. doi: 10.1016/S0021-9258(18)98843-5 . PMID   2071605. Open Access logo PLoS transparent.svg
  3. 1 2 "net blotch (Pyrenophora teres)". www.plantwise.org. Retrieved 11 December 2018.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 Liu, Zhaohui; Ellwood, Simon; Oliver, Richard; Friesen, Timothy (1 January 2011). "Pyrenophora teres: Profile of an increasingly damaging barley pathogen". Molecular Plant Pathology. 12 (1): 1–19. doi:10.1111/j.1364-3703.2010.00649.x. PMC   6640222 . PMID   21118345.
  5. "General introduction" (PDF). digital.library.adelaide.edu.au. Retrieved 11 December 2018.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 "The epidemiology and control of spot form of net blotch of barley in Victoria, Australia" (PDF). core.ac.uk. Archived from the original (PDF) on 15 December 2018. Retrieved 11 December 2018.
  7. Usta, Pınar; Karakaya, Aziz; Oğuz, Arzu; Mert, Zafer; Akan, Kadir; Çeti̇n, Lütfi (5 February 2014). "Determination of the Seedling Reactions of Twenty Barley Cultivars to Six Isolates of Drechslera Teres F. Maculata". Anadolu Tarım Bilimleri Dergisi. 29 (1): 20–25. doi:10.7161/anajas.2014.29.1.20. ISSN   1308-8750.
  8. Department of Economic Development, Jobs. "Net Blotches of Barley". agriculture.vic.gov.au. Retrieved 11 December 2018.
  9. "AHDB Cereals & Oilseeds : Net Blotch". cereals.ahdb.org.uk. Retrieved 11 December 2018.