Sleeping in space is part of space medicine and mission planning, with impacts on the health, capabilities and morale of astronauts.
Human spaceflight often requires astronaut crews to endure long periods without rest. Studies have shown that lack of sleep can cause fatigue that leads to errors while performing critical tasks. [1] [2] [3] Also, individuals who are fatigued often cannot determine the degree of their impairment. [4] Astronauts and ground crews frequently suffer from the effects of sleep deprivation and circadian rhythm disruption. Fatigue due to sleep loss, sleep shifting and work overload could cause performance errors that put space flight participants at risk of compromising mission objectives as well as the health and safety of those on board.
Sleeping in space requires that astronauts sleep in a crew cabin, a small room about the size of a shower stall. They lie in a sleeping bag which is strapped to the wall. [5] Astronauts have reported having nightmares and dreams, and snoring while sleeping in space. [6]
Sleeping and crew accommodations need to be well-ventilated. [7] In the early 21st century[ when? ], crew on the ISS were said to average about six hours of sleep per day. [8]
Chronic sleep loss can impact performance similarly to total sleep loss and recent studies have shown that cognitive impairment after 17 hours of wakefulness is similar to impairment from an elevated blood alcohol level.
It has been suggested that work overload and circadian desynchronization may cause performance impairment. Those who perform shift work suffer from increased fatigue because the timing of their sleep/wake schedule is out of sync with natural daylight (see Shift work syndrome). They are more prone to auto and industrial accidents as well as a decreased quality of work and productivity on the job. [9]
Ground crews at NASA are also affected by slam shifting (sleep shifting) while supporting critical International Space Station operations during overnight shifts.
During the Apollo program, it was discovered that adequate sleep in the small volumes available in the command module and Lunar Module was most easily achieved if (1) there was minimum disruption to the pre-flight circadian rhythm of the crew members; (2) all crew members in the spacecraft slept at the same time; (3) crew members were able to doff their suits before sleeping; (4) work schedules were organized – and revised as needed – to provide an undisturbed (radio quiet) 6-8 hour rest period during each 24-hour period; (5) in zero-g, loose restraints were provided to keep the crewmen from drifting; (6) on the lunar surface, a hammock or other form of bed was provided; (7) there was an adequate combination of cabin temperature and sleepwear for comfort; (8) the crew could dim instrument lights and either cover their eyes or exclude sunlight from the cabin; and (9) equipment such as pumps were adequately muffled. [10]
NASA management currently[ when? ] has limits in place to restrict the number of hours in which astronauts are to complete tasks and events. This is known as the "Fitness for Duty Standards". Space crews' current nominal number of work hours is 6.5 hours per day, and weekly work time should not exceed 48 hours. NASA defines critical workload overload for a space flight crew as 10-hour work days for 3 days per work week, or more than 60 hours per week (NASA STD-3001, Vol. 1 [11] ). Astronauts have reported that periods of high-intensity workload can result in mental and physical fatigue. [12] Studies from the medical and aviation industries have shown that increased and intense workloads combined with disturbed sleep and fatigue can lead to significant health issues and performance errors. [13]
Research suggests that astronauts' quality and quantity of sleep while in space is markedly reduced than while on Earth. The use of sleep-inducing medication could be indicative of poor sleep due to disturbances. Current space flight data shows that accuracy, response time and recall tasks are all affected by sleep loss, work overload, fatigue and circadian desynchronization.
The most common factors that can affect the length and quality of sleep while in space include: [9]
An evidence gathering effort is currently underway to evaluate the impact of these individual, physiological and environmental factors on sleep and fatigue. The effects of work-rest schedules, environmental conditions and flight rules and requirements on sleep, fatigue and performance are also being evaluated. [9]
Paul J. Weitz said that on Skylab he could not sleep vertically despite being weightless, so removed the metal frame in his sleeping bag and slept horizontally on it. [14]
Exposure to light is the largest contributor to circadian desynchronization on board the ISS. Since the ISS orbits the Earth every 1.5 hours, the flight crew experiences 16 sunrises and sunsets per day. Slam shifting (sleep shifting) is also a considerable external factor that causes circadian desynchronization in the current space flight environment. [9]
Other factors that may cause circadian desynchronization in space: [15]
Both acute and chronic partial sleep loss occur frequently in space flight due to operational demands and for physiological reasons not yet entirely understood. Some astronauts are affected more than others. Earth-based research has demonstrated that sleep loss poses risks to astronaut performance, and that there are large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss point to an underlying genetic component. Indeed, data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. [16]
Biomathematical models are being developed to instantiate the biological dynamics of sleep need and circadian timing. These models could predict astronaut performance relative to fatigue and circadian desynchronization. [15]
Sleep debt or sleep deficit is the cumulative effect of not getting enough sleep. A large sleep debt may lead to mental or physical fatigue, and can adversely affect one's mood, energy, and ability to think clearly.
Polyphasic sleep is the practice of sleeping during multiple periods over the course of 24 hours, in contrast to monophasic sleep, which is one period of sleep within 24 hours. Biphasicsleep refers to two periods, while polyphasic usually means more than two. Segmented sleep and divided sleep may refer to polyphasic or biphasic sleep, but may also refer to interrupted sleep, where the sleep has one or several shorter periods of wakefulness, as was the norm for night sleep in pre-industrial societies.
Skylab 4 was the third crewed Skylab mission and placed the third and final crew aboard the first American space station.
Shift work is an employment practice designed to keep a service or production line operational at all times. The practice typically sees the day divided into shifts, set periods of time during which different groups of workers perform their duties. The term "shift work" includes both long-term night shifts and work schedules in which employees change or rotate shifts.
The effects of spaceflight on the human body are complex and largely harmful over both short and long term. Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton. Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and changes in the immune system. Additional symptoms include fluid redistribution, loss of body mass, nasal congestion, sleep disturbance, and excess flatulence. A 2024 assessment noted that "well-known problems include bone loss, heightened cancer risk, vision impairment, weakened immune systems, and mental health issues... [y]et what’s going on at a molecular level hasn’t always been clear", arousing concerns especially vis a vis private and commercial spaceflight now occurring without any scientific or medical research being conducted among those populations regarding effects.
Space Medicine is a subspecialty of Emergency Medicine which evolved from the Aerospace Medicine specialty. Space Medicine is dedicated to the prevention and treatment of medical conditions that would limit success in space operations. Space medicine focuses specifically on prevention, acute care, emergency medicine, wilderness medicine, hyper/hypobaric medicine in order to provide medical care of astronauts and spaceflight participants. The spaceflight environment poses many unique stressors to the human body, including G forces, microgravity, unusual atmospheres such as low pressure or high carbon dioxide, and space radiation. Space medicine applies space physiology, preventive medicine, primary care, emergency medicine, acute care medicine, austere medicine, public health, and toxicology to prevent and treat medical problems in space. This expertise is additionally used to inform vehicle systems design to minimize the risk to human health and performance while meeting mission objectives.
Shift work sleep disorder (SWSD) is a circadian rhythm sleep disorder characterized by insomnia, excessive sleepiness, or both affecting people whose work hours overlap with the typical sleep period. Insomnia can be the difficulty to fall asleep or to wake up before the individual has slept enough. About 20% of the working population participates in shift work. SWSD commonly goes undiagnosed, and it is estimated that 10–40% of shift workers have SWSD. The excessive sleepiness appears when the individual has to be productive, awake and alert. Both symptoms are predominant in SWSD. There are numerous shift work schedules, and they may be permanent, intermittent, or rotating; consequently, the manifestations of SWSD are quite variable. Most people with different schedules than the ordinary one might have these symptoms but the difference is that SWSD is continual, long-term, and starts to interfere with the individual's life.
Sleep deprivation, also known as sleep insufficiency or sleeplessness, is the condition of not having adequate duration and/or quality of sleep to support decent alertness, performance, and health. It can be either chronic or acute and may vary widely in severity. All known animals sleep or exhibit some form of sleep behavior, and the importance of sleep is self-evident for humans, as nearly a third of a person's life is spent sleeping. Sleep deprivation is common as it affects about one-third of the population.
Fatigue is a major human factors issue in aviation safety. The Fatigue Avoidance Scheduling Tool (FAST) was developed by the United States Air Force in 2000–2001 to address the problem of aircrew fatigue in aircrew flight scheduling. FAST is a Windows program that allows scientists, planners and schedulers to quantify the effects of various work-rest schedules on human performance. It allows work and sleep data entry in graphic, symbolic (grid) and text formats. The graphic input-output display shows cognitive performance effectiveness as a function of time. An upper green area on the graph ends at the time for normal sleep, 90% effectiveness. The goal of the planner or scheduler is to keep performance effectiveness at or above 90% by manipulating the timing and lengths of work and rest periods. A work schedule is entered as red bands on the time line. Sleep periods are entered as blue bands across the time line, below the red bands.
Fatigue is a major safety concern in many fields, but especially in transportation, because fatigue can result in disastrous accidents. Fatigue is considered an internal precondition for unsafe acts because it negatively affects the human operator's internal state. Research has generally focused on pilots, truck drivers, and shift workers.
The effects of sleep deprivation on cognitive performance are a broad range of impairments resulting from inadequate sleep, impacting attention, executive function and memory. An estimated 20% of adults or more have some form of sleep deprivation. It may come with insomnia or major depressive disorder, or indicate other mental disorders. The consequences can negatively affect the health, cognition, energy level and mood of a person and anyone around. It increases the risk of human error, especially with technology.
In chronobiology, a circasemidian rhythm is a physiological arousal cycle that peaks twice in a 24-hour day. It may also be called the semicircadian rhythm. Numerous studies have demonstrated that human circadian rhythms in many measures of performance and physiological activity have a 2-peak daily (circasemidian) pattern. The word, circasemidian, is based upon the Latin words circa ("about"), semi ("half") and dia ("day"). Thus, this is a rhythm that has two cycles per day, and some investigators have referred to it as the semicircadian rhythm. It usually serves to (1) deepen the pre-dawn nadir in body temperature and cognitive performance, (2) create a flat spot during the early afternoon in the daytime increase in body temperature and cognitive performance, and (3) heighten the early-evening peak in body temperature and cognitive performance. Broughton was the first to bring this characteristic of human performance to the attention of researchers.
Charles Andrew Czeisler is a Hungarian-American physician and sleep and circadian researcher. He is a leading researcher and author in the fields of the effects of light on human physiology, circadian rhythms and sleep medicine.
It is inevitable that medical conditions of varying complexity, severity and emergency will occur during spaceflight missions with human participants. Different levels of care are required depending on the problem, available resources and time required to return to Earth.
Studies, which include laboratory investigations and field evaluations of population groups that are analogous to astronauts, provide compelling evidence that working long shifts for extended periods of time contributes to sleep deprivation and can cause performance decrements, health problems, and other detrimental consequences, including accidents, that can affect both the worker and others.
Psychological and sociological effects of space flight are important to understanding how to successfully achieve the goals of long-duration expeditionary missions. Although robotic spacecraft have landed on Mars, plans have also been discussed for a human expedition, perhaps in the 2030s, for a return mission.
The International Civil Aviation Organization (ICAO) defines fatigue as "A physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload." The phenomenon places great risk on the crew and passengers of an airplane because it significantly increases the chance of pilot error. Fatigue is particularly prevalent among pilots because of "unpredictable work hours, long duty periods, circadian disruption, and insufficient sleep". These factors can occur together to produce a combination of sleep deprivation, circadian rhythm effects, and 'time-on task' fatigue. Regulators attempt to mitigate fatigue by limiting the number of hours pilots are allowed to fly over varying periods of time.
Philippa Helen Gander is a New Zealand sleep researcher. In 2021, she was conferred with the title of emeritus professor by Massey University, where she had been inaugural director of the Sleep/Wake Research Centre until stepping down from that role in 2019.
Charmane Eastman is an American academic research scientist whose career has focused on studying circadian rhythms and their relationships to sleep, jet lag, and shift work. She has also studied winter depression, more properly known as seasonal affective disorder (SAD). Of special focus are the effects of bright light and melatonin on circadian rhythms.
Elizabeth Klerman is a professor of neurology at Harvard Medical School. Her research focuses on applying circadian and sleep research principles to human physiology and pathophysiology. She also uses mathematical analysis and modeling to study human circadian, sleep, and objective neurobehavioral performance and subjective (self-reported) mood and alertness rhythms.
This article incorporates public domain material from Human Health and Performance Risks of Space Exploration Missions (PDF). National Aeronautics and Space Administration. (NASA SP-2009-3405).