Bioastronautics

Last updated
STS-103 Reflection on astronaut's visor.jpg
Laurel van der Wal, head of bioastronautics at Space Technology Laboratories, 1961 Laurel van der Wal.jpg
Laurel van der Wal, head of bioastronautics at Space Technology Laboratories, 1961

Bioastronautics is a specialty area of biological and astronautical research which encompasses numerous aspects of biological, behavioral, and medical concern governing humans and other living organisms in a space flight environment; and includes design of payloads, space habitats, and life-support systems. In short, it spans the study and support of life in space.

Contents

Bioastronautics includes many similarities with its sister discipline astronautical hygiene; they both study the hazards that humans may encounter during a space flight. However, astronautical hygiene differs in many respects e.g. in this discipline, once a hazard is identified, the exposure risks are then assessed and the most effective measures determined to prevent or control exposure and thereby protect the health of the astronaut. Astronautical hygiene is an applied scientific discipline that requires knowledge and experience of many fields including bioastronautics, space medicine, ergonomics etc. The skills of astronautical hygiene are already being applied for example, to characterise Moon dust and design the measures to mitigate exposure during lunar exploration, to develop accurate chemical monitoring techniques and use the results in the setting SMACs.

Of particular interest from a biological perspective are the effects of reduced gravitational force felt by inhabitants of spacecraft. Often referred to as "microgravity", the lack of sedimentation, buoyancy, or convective flows in fluids results in a more quiescent cellular and intercellular environment primarily driven by chemical gradients. Certain functions of organisms are mediated by gravity, such as gravitropism in plant roots and negative gravitropism in plant stems, and without this stimulus growth patterns of organisms onboard spacecraft often diverge from their terrestrial counterparts. Additionally, metabolic energy normally expended in overcoming the force of gravity remains available for other functions. This may take the form of accelerated growth in organisms as diverse as worms like C. elegans to miniature parasitoid wasps such as Spangia endius. It may also be used in the augmented production of secondary metabolites such as the vinca alkaloids Vincristine and Vinblastine in the rosy periwinkle ( Catharanthus roseus ), whereby space grown specimens often have higher concentrations of these constituents that on earth are present in only trace amounts. [1]

From an engineering perspective, facilitating the delivery and exchange of air, food, and water, and the processing of waste products is also challenging. The transition from expendable physicochemical methods to sustainable bioregenerative systems that function as a robust miniature ecosystem is another goal of bioastronautics in facilitating long duration space travel. Such systems are often termed Closed Ecological Life Support Systems (CELSS).

From a medical perspective, long duration space flight also has physiological impacts on astronauts. Accelerated bone decalcification, similar to osteopenia and osteoporosis on Earth, is just one such condition. [2] Study of these effects is useful not only in advancing methods for safe habitation of and travel through space, but also in uncovering ways to more effectively treat the related terrestrial ailments.

NASA's Johnson Space Center in Houston, Texas maintains a Bioastronautics Library. The one-room facility provides a collection of textbooks, reference books, conference proceedings, and academic journals related to bioastronautics topics. [3] Because the library is located within secure government property (not part of Space Center Houston, the official visitors center of JSC), it is not generally accessible to the public.

See also

Related Research Articles

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Outline of space science</span> Overview of and topical guide to space science

The following outline is provided as an overview and topical guide to space science:

<span class="mw-page-title-main">Spaceflight</span> Flight into or through outer space

Spaceflight is an application of astronautics to fly spacecraft into or through outer space, either with or without humans on board. Most spaceflight is uncrewed and conducted mainly with spacecraft such as satellites in orbit around Earth, but also includes space probes for flights beyond Earth orbit. Such spaceflight operate either by telerobotic or autonomous control. The more complex human spaceflight has been pursued soon after the first orbital satellites and has reached the Moon and permanent human presence in space around Earth, particularly with the use of space stations. Human spaceflight programs include the Soyuz, Shenzhou, the past Apollo Moon landing and the Space Shuttle programs. Other current spaceflight are conducted to the International Space Station and to China's Tiangong Space Station.

<span class="mw-page-title-main">STS-61-A</span> 1985 American crewed spaceflight funded and directed by West Germany

STS-61-A was the 22nd mission of NASA's Space Shuttle program. It was a scientific Spacelab mission, funded and directed by West Germany – hence the non-NASA designation of D-1. STS-61-A was the ninth and last successful flight of Space Shuttle Challenger before the disaster. STS-61-A holds the current record for the largest crew—eight people—aboard any single spacecraft for the entire period from launch to landing.

<span class="mw-page-title-main">Space adaptation syndrome</span> Condition caused by weightlessness

Space adaptation syndrome (SAS) or space sickness is a condition experienced by as many as half of all space travelers during their adaptation to weightlessness once in orbit. It is the opposite of terrestrial motion sickness since it occurs when the environment and the person appear visually to be in motion relative to one another even though there is no corresponding sensation of bodily movement originating from the vestibular system.

<span class="mw-page-title-main">Animals in space</span> Overview of space research concerning non-human animals

Animals in space originally served to test the survivability of spaceflight, before human spaceflights were attempted. Later, other non-human animals were flown to investigate various biological processes and the effects microgravity and space flight might have on them. Bioastronautics is an area of bioengineering research that spans the study and support of life in space. To date, seven national space programs have flown animals into space: the United States, Soviet Union, France, Argentina, China, Japan and Iran.

<span class="mw-page-title-main">Life-support system</span> Technology that allows survival in hostile environments

A life-support system is the combination of equipment that allows survival in an environment or situation that would not support that life in its absence. It is generally applied to systems supporting human life in situations where the outside environment is hostile, such as outer space or underwater, or medical situations where the health of the person is compromised to the extent that the risk of death would be high without the function of the equipment.

<span class="mw-page-title-main">Artificial gravity</span> Use of circular rotational force to mimic gravity

Artificial gravity is the creation of an inertial force that mimics the effects of a gravitational force, usually by rotation. Artificial gravity, or rotational gravity, is thus the appearance of a centrifugal force in a rotating frame of reference, as opposed to the force experienced in linear acceleration, which by the equivalence principle is indistinguishable from gravity. In a more general sense, "artificial gravity" may also refer to the effect of linear acceleration, e.g. by means of a rocket engine.

<span class="mw-page-title-main">Effect of spaceflight on the human body</span> Medical issues associated with spaceflight

Venturing into the environment of space can have negative effects on the human body. Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton. Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and changes in the immune system. Additional symptoms include fluid redistribution, loss of body mass, nasal congestion, sleep disturbance, and excess flatulence. Overall, NASA refers to the various deleterious effects of spaceflight on the human body by the acronym RIDGE.

<span class="mw-page-title-main">Space medicine</span> For health conditions encountered during spaceflight

Space medicine is a specialized field under aerospace medicine that focuses on the medical care of astronauts and spaceflight participants. The spaceflight environment poses many unique stressors to the human body, including G forces, microgravity, unusual atmospheres such as low pressure or high carbon dioxide, and space radiation. Space medicine applies preventive medicine, population health, environmental health, and clinical medicine to medically screen and certify individuals for space flight; maintain their health before, during, and after space flight; and inform vehicle systems design to minimize the risk to human health and performance while meeting mission objectives.

Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity. As a consequence, all biological processes are accustomed to the ever-present force of gravity and even small variations in this force can have significant impact on the health and function and the system of organisms.

<span class="mw-page-title-main">Astrobotany</span> Study of plants grown in spacecraft

Astrobotany is an applied sub-discipline of botany that is the study of plants in space environments. It is a branch of astrobiology and botany.

Astronautical hygiene evaluates, and mitigates, hazards and health risks to those working in low-gravity environments. The discipline of astronautical hygiene includes such topics as the use and maintenance of life support systems, the risks of the extravehicular activity, the risks of exposure to chemicals or radiation, the characterization of hazards, human factor issues, and the development of risk management strategies. Astronautical hygiene works side by side with space medicine to ensure that astronauts are healthy and safe when working in space.

<span class="mw-page-title-main">Weightlessness</span> Absence of stress and strain resulting from externally applied mechanical contact-forces

Weightlessness is the complete or near-complete absence of the sensation of weight. It is also termed zero gravity, zero G-force, or zero-G. Micro-g environment is more or less synonymous, with the recognition that g-forces are never exactly zero.

<span class="mw-page-title-main">Space architecture</span> Architecture of off-planet habitable structures

Space architecture is the theory and practice of designing and building inhabited environments in outer space. This mission statement for space architecture was developed at the World Space Congress in Houston in 2002 by members of the Technical Aerospace Architecture Subcommittee of the American Institute of Aeronautics and Astronautics (AIAA). The architectural approach to spacecraft design addresses the total built environment. It is mainly based on the field of engineering, but also involves diverse disciplines such as physiology, psychology, and sociology.

Space neuroscience is the scientific study of the central nervous system (CNS) functions during spaceflight. Living systems can integrate the inputs from the senses to navigate in their environment and to coordinate posture, locomotion, and eye movements. Gravity has a fundamental role in controlling these functions. In weightlessness during spaceflight, integrating the sensory inputs and coordinating motor responses is harder to do because gravity is no longer sensed during free-fall. For example, the otolith organs of the vestibular system no longer signal head tilt relative to gravity when standing. However, they can still sense head translation during body motion. Ambiguities and changes in how the gravitational input is processed can lead to potential errors in perception, which affects spatial orientation and mental representation. Dysfunctions of the vestibular system are common during and immediately after spaceflight, such as space motion sickness in orbit and balance disorders after return to Earth.

<span class="mw-page-title-main">Astronaut training</span> Preparing astronauts for space missions

Astronaut training describes the complex process of preparing astronauts in regions around the world for their space missions before, during and after the flight, which includes medical tests, physical training, extra-vehicular activity (EVA) training, procedure training, rehabilitation process, as well as training on experiments they will accomplish during their stay in space.

It is inevitable that medical conditions of varying complexity, severity and emergency will occur during spaceflight missions with human participants. Different levels of care are required depending on the problem, available resources and time required to return to Earth.

<span class="mw-page-title-main">Plants in space</span> Growth of plants in outer space

The growth of plants in outer space has elicited much scientific interest. In the late 20th and early 21st century, plants were often taken into space in low Earth orbit to be grown in a weightless but pressurized controlled environment, sometimes called space gardens. In the context of human spaceflight, they can be consumed as food and/or provide a refreshing atmosphere. Plants can metabolize carbon dioxide in the air to produce valuable oxygen, and can help control cabin humidity. Growing plants in space may provide a psychological benefit to human spaceflight crews. Usually the plants were part of studies or technical development to further develop space gardens or conduct science experiments. To date plants taken into space have had mostly scientific interest, with only limited contributions to the functionality of the spacecraft, however the Apollo Moon tree project was more or less forestry inspired mission and the trees are part of a country's bicentennial celebration.

The following page is a list of scientific research that is currently underway or has been previously studied on the International Space Station by the European Space Agency.

References

  1. Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard (1998). "Space flight research leading to the development of enhanced plant products: Results from STS-94". AIP Conference Proceedings. 420: 578–585. Bibcode:1998AIPC..420..578S. doi:10.1063/1.54909. ISSN   0094-243X.
  2. Graebe, Annemarie; Schuck, Edgar L.; Lensing, Petra; Putcha, Lakshmi; Derendorf, Hartmut (2004). "Physiological, Pharmacokinetic, and Pharmacodynamic Changes in Space". The Journal of Clinical Pharmacology. 44 (8): 837–853. doi:10.1177/0091270004267193. ISSN   0091-2700. PMID   15286087. S2CID   7861059.
  3. Duggan, Clay. "STI Center resources still available to employees following move to UHCL".