Space toilet

Last updated

Space toilet Space Toilet (8687080967).jpg
Space toilet

A space toilet or zero-gravity toilet is a toilet that can be used in a weightless environment. In the absence of weight, the collection and retention of liquid and solid waste is directed by use of airflow. Since the air used to direct the waste is returned to the cabin, it is filtered beforehand to control odor and cleanse bacteria. In older systems, wastewater is vented into space, and any solids are compressed and stored for removal upon landing. More modern systems expose solid waste to vacuum pressures to kill bacteria, which prevents odor problems and kills pathogens. [1]

Contents

Background

Astronauts say that they are most often asked how they go to the bathroom in space. [2] In space, weightlessness causes fluids to distribute uniformly around human bodies. Kidneys detect the fluid movement and a physiological reaction causes the humans to need to relieve themselves within two hours of departure from Earth. The space toilet was thus the first device activated on shuttle flights, after astronauts unbuckled themselves. [3]

Mechanism

In the absence of gravity, space toilets use air flow to pull urine and feces away from the body and into the proper receptacles. A new feature of the space toilet is the automatic start of air flow when the toilet lid is lifted, which also helps with odor control. By popular (astronaut) demand, it also includes a more ergonomic design requiring less clean-up and maintenance time, with corrosion-resistant, durable parts to reduce the likelihood of maintenance outside of the set schedule. Less time spent on plumbing means more time for the crew to spend on science and other high-priority exploration focused tasks. [4]

The crew use a specially shaped funnel and hose for urine (suction cup) and the seat for bowel movements. The funnel and seat can be used simultaneously, reflecting feedback from female astronauts. The space toilet seat may look uncomfortably small and pointy, but in microgravity, it is ideal. It provides ideal body contact to make sure that everything goes where it should. [4]

The space toilet includes foot restraints and handholds for astronauts to keep themselves from floating away. Everyone positions themselves differently while "going", and consistent astronaut feedback indicated that the traditional thigh straps were a hassle. [4]

Toilet paper, wipes, and gloves are disposed of in water-tight bags. Solid waste in individual water-tight bags is compacted in a removable fecal storage canister. A small number of fecal canisters are returned to Earth for evaluation, but most are loaded into a cargo ship that burns up on re-entry through Earth's atmosphere. Currently, fecal waste is not processed for water recovery, but NASA is studying this capability. [4]

Basic parts

Diagram of the elements of the Space Shuttle WCS Space toilet.svg
Diagram of the elements of the Space Shuttle WCS

There are four basic parts in a space toilet: the liquid-waste vacuum tube, the vacuum chamber, the waste storage drawers, and the solid-waste collection bags. The liquid-waste vacuum tube is a 2-to-3-foot (61 to 91 cm) long rubber or plastic hose that is attached to the vacuum chamber and connected to a fan that provides suction. At the end of the tube is a detachable urine receptacle, which comes in different versions for male and female astronauts. The male urine receptacle is a plastic funnel 2 to 3 inches (5 to 8 cm) in width and about 4 inches (10 cm) deep. A male astronaut urinates directly into the funnel from a distance of 2 to 3 inches (5 to 8 cm) away. The female funnel is oval and is 2 by 4 inches (5 by 10 cm) wide at the rim. Near the funnel's rim are small holes or slits that allow air movement to prevent excessive suction. The vacuum chamber is a cylinder about 1-foot (30 cm) deep and 6 inches (15 cm) wide with clips on the rim, where waste collection bags may be attached and a fan that provides suction. Urine is pumped into and stored in waste storage drawers. Solid waste is stored in a detachable bag made of a special fabric that lets gas (but not liquid or solid) escape, a feature that allows the fan at the back of the vacuum chamber to pull the waste into the bag. When the astronaut is finished, he or she then twists the bag and places it in a waste storage drawer. Samples of urine and solid waste are frozen and taken to Earth for testing.

Designs

Space Shuttle Waste Collection System

The toilet used on the Space Shuttle is called the Waste Collection System (WCS). In addition to air flow, it also uses rotating fans to distribute solid waste for in-flight storage. Solid waste is distributed in a cylindrical container, which is then exposed to vacuum to dry the waste. Liquid waste was disposed of by discharging it into space. [6] [ citation needed ]

The WCS required many hours of training. For urination, a hose was used. For defecation, with a 4 inches (100 mm) diameter for the hole in the seat—much smaller than in a conventional toilet—the user's bottom needed to be exactly centered on the seat. NASA built a simulator with a video camera in the hole; those training used a crosshair to learn how to position their bodies, while other astronauts watched and made jokes. [7] [2]

The WCS had several malfunctions in flight. On the eight-day STS-3 test flight, the toilet had broken down, and its two-man crew (Jack Lousma and Gordon Fullerton) resorted to fecal containment devices (FCD) for waste elimination and disposal.[ citation needed ] An anomaly of the liquid disposal system on Discovery during its maiden flight resulted in a buildup of frozen excrements outside the orbiter, which was then removed by means of Canadarm. [6] During STS-46, one of the fans malfunctioned, and crew member Claude Nicollier was required to perform in-flight maintenance (IFM).

International Space Station

Expedition 65 Flight Engineers Mark Vande Hei (from left) and Shane Kimbrough partner together for orbital plumbing tasks as they install a new toilet inside the International Space Station's Tranquility module. Astronauts Mark Vande Hei and Shane Kimbrough work on a new toilet.jpg
Expedition 65 Flight Engineers Mark Vande Hei (from left) and Shane Kimbrough partner together for orbital plumbing tasks as they install a new toilet inside the International Space Station's Tranquility module.

There are three toilets on the International Space Station, located in the Zvezda, Nauka and Tranquility modules. [8] They use a fan-driven suction system similar to the Space Shuttle WCS. Liquid waste is collected in 20-litre (5.3 US gal) containers. Solid waste is collected in individual micro-perforated bags, which are stored in an aluminum container. [9] Full containers are transferred to Progress for disposal. An additional Waste and Hygiene Compartment is part of the Tranquility module launched in 2010. In 2007, NASA purchased a Russian-made toilet similar to the one already aboard ISS rather than develop one internally. [10]

On May 21, 2008, the gas–liquid separator pump failed on the 7-year-old toilet in Zvezda, although the solid-waste portion was still functioning. The crew attempted to replace various parts, but was unable to repair the malfunctioning part. In the interim, they used a manual mode for urine collection. [11] The crew had other options: to use the toilet on the Soyuz transport module (which only has capacity for a few days of use) or to use urine-collection bags as needed. [12] A replacement pump was sent from Russia in a diplomatic pouch, so that Space Shuttle Discovery could take it to the station as part of mission STS-124 on June 2. [13] [14] [15]

Other designs

The Soviet/Russian space station Mir's toilet also used a system similar to the WCS. [16]

While the Soyuz spacecraft had an onboard toilet facility since its introduction in 1967 (due to the additional space in the Orbital Module), all Gemini and Apollo spacecraft required astronauts to urinate in a so-called "relief tube", in which the contents were dumped into space, while fecal matter was collected in specially-designed bags. [17] The facilities were so uncomfortable that, to avoid using them, astronauts ate less than half the available food on their flights. [18] The Skylab space station, used by NASA between May 1973 and March 1974, had an onboard WCS facility, which served as a prototype for the Shuttle's WCS, but also featured an onboard shower facility. The Skylab toilet, which was designed and built by the Fairchild Republic Corp. on Long Island, was primarily a medical system to collect and return to Earth samples of urine, feces and vomit, so that calcium balance in astronauts could be studied.

Even with the facilities, astronauts and cosmonauts for both launch systems employ pre-launch bowel clearing and low-residue diets to minimize the need for defecation. [19] The Soyuz toilet has been used on a return mission from Mir. [16]

NPP Zvezda is a Russian developer of space equipment, which includes zero-gravity toilets. [20]

A $23 million next-generation space toilet called the Universal Waste Management System (UWMS) is being developed by NASA for Orion and the International Space Station. [21] [22] The UWMS is the first space toilet designed specifically for women as well as men, easing the use of space toilets for women and use for stool and urine at the same time. It is designed to be fully automated, quieter, lighter, more reliable, more hygienic and more compact than previous systems. [21] [23] Among its innovations, the UWMS relies on a 3D printing technique to incorporate metals including Inconel, Elgiloy, and titanium that can withstand the acids used to treat urine within the toilet. [23] The UWMS was first delivered to the ISS in October 2020. [24]

See also

Related Research Articles

<span class="mw-page-title-main">International Space Station</span> Inhabitated space station in low Earth orbit (1998–Present)

The International Space Station (ISS) is a large space station assembled and maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA, Roscosmos (Russia), ESA (Europe), JAXA (Japan), and CSA (Canada). The ISS is the largest space station ever built. Its primary purpose is to perform microgravity and space environment experiments.

<span class="mw-page-title-main">STS-112</span> 2002 American crewed spaceflight to the ISS

STS-112 was an 11-day Space Shuttle mission to the International Space Station (ISS) flown by Space ShuttleAtlantis. Space Shuttle Atlantis was launched on 7 October 2002 at 19:45 UTC from the Kennedy Space Center's launch pad 39B to deliver the 28,000 pound Starboard 1 (S1) truss segment to the Space Station. Ending a 4.5-million-mile journey, Atlantis landed at 15:44 UTC on 18 October 2002 on runway 33 at the Kennedy Space Center's Shuttle Landing Facility.

<span class="mw-page-title-main">STS-106</span> 2000 American crewed spaceflight to the ISS

STS-106 was a 2000 Space Shuttle mission to the International Space Station (ISS) flown by Space Shuttle Atlantis.

<i>Zvezda</i> (ISS module) Russian International Space Station module

Zvezda, Salyut DOS-8, also known as the Zvezda Service Module, is a module of the International Space Station (ISS). It was the third module launched to the station, and provided all of the station's life support systems, some of which are supplemented in the US Orbital Segment (USOS), as well as living quarters for two crew members. It is the structural and functional center of the Russian Orbital Segment (ROS), which is the Russian part of the ISS. Crew assemble here to deal with emergencies on the station.

<span class="mw-page-title-main">Extravehicular Mobility Unit</span> Series of semi-rigid two-piece space suit models from the United States

The Extravehicular Mobility Unit (EMU) is an independent anthropomorphic spacesuit that provides environmental protection, mobility, life support, and communications for astronauts performing extravehicular activity (EVA) in Earth orbit. Introduced in 1981, it is a two-piece semi-rigid suit, and is currently one of two types of EVA spacesuits used by crew members on the International Space Station (ISS), the other being the Russian Orlan space suit. It was used by NASA's Space Shuttle astronauts prior to the end of the Shuttle program in 2011.

Shuttle–<i>Mir</i> program 1993–1998 collaborative Russia–US space program

The Shuttle–Mir program was a collaborative 11-mission space program between Russia and the United States that involved American Space Shuttles visiting the Russian space station Mir, Russian cosmonauts flying on the Shuttle, and an American astronaut flying aboard a Soyuz spacecraft to engage in long-duration expeditions aboard Mir.

<span class="mw-page-title-main">STS-126</span> 2008 American crewed spaceflight to the ISS

STS-126 was the one hundred and twenty-fourth NASA Space Shuttle mission, and twenty-second orbital flight of the Space Shuttle Endeavour (OV-105) to the International Space Station (ISS). The purpose of the mission, referred to as ULF2 by the ISS program, was to deliver equipment and supplies to the station, to service the Solar Alpha Rotary Joints (SARJ), and repair the problem in the starboard SARJ that had limited its use since STS-120. STS-126 launched on 15 November 2008 at 00:55:39 UTC from Launch Pad 39A (LC-39A) at NASA's Kennedy Space Center (KSC) with no delays or issues. Endeavour successfully docked with the station on 16 November 2008. After spending 15 days, 20 hours, 30 minutes, and 30 seconds docked to the station, during which the crew performed four spacewalks, and transferred cargo, the orbiter undocked on 28 November 2008. Due to poor weather at Kennedy Space Center, Endeavour landed at Edwards Air Force Base on 30 November 2008 at 21:25:09 UTC.

<span class="mw-page-title-main">Minus Eighty Degree Laboratory Freezer for ISS</span> Experiment storage freezer for the ISS

The Minus Eighty-Degree Laboratory Freezer for ISS (MELFI) is a European-built experiment storage freezer for the International Space Station. It comprises four independent dewars which can be set to operate at different temperatures. Currently temperatures of −80 °C, −26 °C, and +4 °C are used during on-orbit ISS operations. Both reagents and samples will be stored in the freezer. As well as storage the freezer is designed to be used to transport samples to and from the ISS in a temperature controlled environment. The total capacity of the unit is 300 litres.

<span class="mw-page-title-main">STS-133</span> 2011 American crewed spaceflight to the ISS and final flight of Space Shuttle Discovery

STS-133 was the 133rd mission in NASA's Space Shuttle program; during the mission, Space Shuttle Discovery docked with the International Space Station. It was Discovery's 39th and final mission. The mission launched on February 24, 2011, and landed on March 9, 2011. The crew consisted of six American astronauts, all of whom had been on prior spaceflights, headed by Commander Steven Lindsey. The crew joined the long-duration six person crew of Expedition 26, who were already aboard the space station. About a month before lift-off, one of the original crew members, Tim Kopra, was injured in a bicycle accident. He was replaced by Stephen Bowen.

<span class="mw-page-title-main">STS-124</span> 2008 American crewed spaceflight to the ISS

STS-124 was a Space Shuttle mission, flown by Space Shuttle Discovery to the International Space Station. Discovery launched on May 31, 2008, at 17:02 EDT, moved from an earlier scheduled launch date of May 25, 2008, and landed safely at the Kennedy Space Center's Shuttle Landing Facility, at 11:15 EDT on June 14, 2008. Its objective was to deliver the largest module of the space station – Kibō, the Japanese Experiment Module pressurized section. The mission is also referred to as ISS-1J by the ISS program.

<span class="mw-page-title-main">STS-129</span> 2009 American crewed spaceflight to the ISS

STS-129 was a NASA Space Shuttle mission to the International Space Station (ISS). Atlantis was launched on November 16, 2009, at 14:28 EST, and landed at 09:44 EST on November 27, 2009, on runway 33 at the Kennedy Space Center's Shuttle Landing Facility. It was also the last Shuttle mission of the 2000s.

<span class="mw-page-title-main">Shannon Walker</span> American scientist and NASA astronaut

Shannon Walker is an American physicist and a NASA astronaut selected in 2004. She launched on her first mission into space on June 25, 2010, onboard Soyuz TMA-19 and spent over 163 days in space.

<span class="mw-page-title-main">Michael Barratt (astronaut)</span> American aerospace medicine physician and astronaut born 1959

Michael Reed "Mike" Barratt is an American physician and a NASA astronaut. Specializing in aerospace medicine, he served as a flight surgeon for NASA before his selection as an astronaut and has played a role in developing NASA's space medicine programs for both the Shuttle-Mir Program and International Space Station. His first spaceflight was a long-duration mission to the International Space Station, as a flight engineer in the Expedition 19 and 20 crew. In March 2011, Barratt completed his second spaceflight as a crew member of STS-133. Barratt pilots the SpaceX Crew-8 mission that launched on 4 March 2024.

<span class="mw-page-title-main">Assembly of the International Space Station</span> Process of assembling the International Space Station

The process of assembling the International Space Station (ISS) has been under way since the 1990s. Zarya, the first ISS module, was launched by a Proton rocket on 20 November 1998. The STS-88 Space Shuttle mission followed two weeks after Zarya was launched, bringing Unity, the first of three node modules, and connecting it to Zarya. This bare 2-module core of the ISS remained uncrewed for the next one and a half years, until in July 2000 the Russian module Zvezda was launched by a Proton rocket, allowing a maximum crew of three astronauts or cosmonauts to be on the ISS permanently.

<span class="mw-page-title-main">Extended Duration Orbiter</span> Space Shuttle hardware

The Extended Duration Orbiter (EDO) program was a project by NASA to prepare for long-term (months) microgravity research aboard Space Station Freedom, which later evolved into the International Space Station. Scientists and NASA needed practical experience in managing progressively longer times for their experiments. The original Space Shuttle configuration usually provided a week to ten days of spaceflight. Several research projects and hardware components were part of the project, of which the EDO-pallet was one of the most visible, contracted by Rockwell International.

<span class="mw-page-title-main">STS-134</span> 2011 American crewed spaceflight to the ISS and final flight of Space Shuttle Endeavour

STS-134 was the penultimate mission of NASA's Space Shuttle program and the 25th and last spaceflight of Space ShuttleEndeavour. This flight delivered the Alpha Magnetic Spectrometer and an ExPRESS Logistics Carrier to the International Space Station. Mark Kelly served as the mission commander. STS-134 was expected to be the final Space Shuttle mission if STS-135 did not receive funding from Congress. However, in February 2011, NASA stated that STS-135 would fly "regardless" of the funding situation. STS-135, flown by Atlantis, took advantage of the processing for STS-335, the Launch on Need mission that would have been necessary if the STS-134 crew became stranded in orbit.

<span class="mw-page-title-main">STS-135</span> 2011 American crewed spaceflight to the ISS and final flight of the Space Shuttle program

STS-135 was the 135th and final mission of the American Space Shuttle program. It used the orbiter Atlantis and hardware originally processed for the STS-335 contingency mission, which was not flown. STS-135 launched on July 8, 2011, and landed on July 21, 2011, following a one-day mission extension. The four-person crew was the smallest of any shuttle mission since STS-6 in April 1983. The mission's primary cargo was the Multi-Purpose Logistics Module (MPLM) Raffaello and a Lightweight Multi-Purpose Carrier (LMC), which were delivered to the International Space Station (ISS). The flight of Raffaello marked the only time that Atlantis carried an MPLM.

<span class="mw-page-title-main">Treadmill with Vibration Isolation Stabilization</span> Treadmill aboard the International Space Station

The Treadmill with Vibration Isolation Stabilization System, commonly abbreviated as TVIS, is a treadmill for use on board the International Space Station and is designed to allow astronauts to run without vibrating delicate microgravity science experiments in adjacent labs. International Space Station treadmills, not necessarily described here, have included the original treadmill, the original TVIS, the БД-2, the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), and the Treadmill 2. Some share a name, some a design, some a function, some use different (passive) vibration-suppression systems, some it is unclear how they differ.

<i>Leonardo</i> (ISS module) Italian module of the International Space Station

The Leonardo Permanent Multipurpose Module (PMM) is a module of the International Space Station. It was flown into space aboard the Space Shuttle Discovery on STS-133 on 24 February 2011 and installed on 1 March. Leonardo is primarily used for storage of spares, supplies and waste on the ISS, which was until then stored in many different places within the space station. It is also the personal hygiene area for the astronauts who live in the US Orbital Segment. The Leonardo PMM was a Multi-Purpose Logistics Module (MPLM) before 2011, then was modified into its current configuration. It was formerly one of two MPLM used for bringing cargo to and from the ISS with the Space Shuttle. The module was named for Italian polymath Leonardo da Vinci.

<span class="mw-page-title-main">ISS ECLSS</span> Life support system for the International Space Station

The International Space Station Environmental Control and Life Support System (ECLSS) is a life support system that provides or controls atmospheric pressure, fire detection and suppression, oxygen levels, waste management and water supply. The highest priority for the ECLSS is the ISS atmosphere, but the system also collects, processes, and stores both waste and water produced and used by the crew—a process that recycles fluid from the sink, shower, toilet, and condensation from the air.

References

  1. "Gigapan: Space Shuttle Discovery Toilet". National Geographic. National Geographic Society. Archived from the original on September 5, 2013. Retrieved September 8, 2013.
  2. 1 2 Shuttle's Toilet Requires Special Training (YouTube). NASA. May 5, 2010. Archived from the original on December 14, 2021.
  3. Walker, Charles D. (March 17, 2005). "Oral History 2 Transcript" (PDF). NASA Johnson Space Center Oral History Project (Interview). Interviewed by Ross-Nazzal, Jennifer. Retrieved December 29, 2011.
  4. 1 2 3 4 Elburn, Darcy (August 2, 2019). "Boldly Go! NASA's New Space Toilet". NASA. Retrieved February 7, 2022.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. NASA (November 15, 2001). "Configuration Changes and Certification Status – Shuttle Urine Pre-treat Assembly" (PDF). STS-108 Flight Readiness Review. Archived from the original (PDF) on November 8, 2004. Retrieved December 28, 2006.
  6. 1 2 "35 Years Ago: STS-41D – First Flight of Space Shuttle Discovery - NASA". August 30, 2019. Retrieved December 16, 2023.
  7. Croft, Melvin; Youskauskas, John (2019). Come Fly with Us: NASA's Payload Specialist Program. Outward Odyssey: a People's History of Spaceflight. University of Nebraska Press. p. 15. ISBN   9781496212252.
  8. Cheryl L. Mansfield (November 7, 2008). "Station Prepares for Expanding Crew". NASA. Retrieved September 17, 2009.
  9. Lu, Ed (September 8, 2003). "HSF – International Space Station – "Greetings Earthling"". Archived from the original on September 6, 2003. Retrieved December 21, 2006.
  10. Fareastgizmos.com (July 6, 2007). "19 million US Dollars for a space station toilet" . Retrieved July 9, 2007.
  11. "Toilet trouble for space station". BBC News. May 29, 2008. Retrieved January 4, 2010.
  12. "Space station struggles with balky toilet". NBC News.
  13. "Astronauts To Fix Space Station Toilet". Archived from the original on September 19, 2008.
  14. "ISS – Zvezda Bathroom Repairs and Shuttle Preps for Crew". Archived from the original on July 15, 2012.
  15. "Space Station Toilet Parts Set for Liftoff". RedOrbit. May 29, 2008.
  16. 1 2 Shuttleworth, Mark (February 9, 2002). "Toilet Training". First African in Space. Retrieved December 28, 2006.
  17. Sandra Häuplik-Meusburger: Architecture for astronauts : an activity-based approach. Springer, 2011, ISBN   978-3-7091-0666-2, Hygiene Apollo – Resume Toilett, p. 134–137.
  18. Bourland, Charles T. (April 7, 2006). "Charles T. Bourland". NASA Johnson Space Center Oral History Project (Interview). Interviewed by Ross-Nazzal, Jennifer. Retrieved December 24, 2014.
  19. "Low Residue Diet". Buzzle.com. December 15, 2011. Archived from the original on April 20, 2008. Retrieved May 24, 2012.
  20. "Assenisation Sanity Unit ASU-8A". Zvezda-npp.ru. Archived from the original on February 13, 2012. Retrieved May 24, 2012.
  21. 1 2 James L. Broyan Jr.; Michael K. Ewert; Patrick W. Fink (August 4, 2014). "Logistics Reduction Technologies for Exploration Missions" (PDF). NASA. Archived from the original (PDF) on October 6, 2014. Retrieved September 28, 2014.
  22. Grush, Loren (October 1, 2020). "NASA is about to launch an upgraded microgravity toilet to the International Space Station". The Verge. Retrieved October 3, 2020.
  23. 1 2 Thomas J. Stapleton; Shelley Baccus; James L. Broyan Jr. (January 1, 2013). "Development of a Universal Waste Management System" (PDF). NASA. Archived from the original (PDF) on October 6, 2014. Retrieved September 28, 2014.
  24. Melissa McKinley; Melissa Borrego; James Lee Broyan, Jr. (July 10, 2022). "NASA Universal Waste Management System and Toilet Integration Hardware Operations on ISS -- Issues, Modifications and Accomplishments" (PDF). Retrieved February 7, 2024.