Orbital pass

Last updated
Visible pass of the International Space Station and Space Shuttle Atlantis over Tampa, Florida, on mission STS-132, May 18, 2010 (five-minute exposure) SpaceStation STS132 Tampa.JPG
Visible pass of the International Space Station and Space Shuttle Atlantis over Tampa, Florida, on mission STS-132, May 18, 2010 (five-minute exposure)

An orbital pass (or simply pass) is the period in which a spacecraft is above the local horizon, and thus available for line-of-sight communication with a given ground station, receiver, or relay satellite, or for visual sighting. The beginning of a pass is termed acquisition of signal (AOS); the end of a pass is termed loss of signal (LOS). [1] The point at which a spacecraft comes closest to a ground observer is the time of closest approach (TCA). [1]

Contents

Timing and duration

The timing and duration of passes depends on the characteristics of the orbit a satellite occupies, as well as the ground topography and any occulting objects on the ground (such as buildings), or in space (for planetary probes, or for spacecraft using relay satellites). [2] The longest duration ground pass will be experienced by an observer directly on the ground track of the satellite. [3] Path loss is greatest toward the start and end of a ground pass, [4] as is Doppler shifting for Earth-orbiting satellites. [5]

Satellites in geosynchronous orbit may be continuously visible from a single ground station, whereas satellites in low Earth orbit only offer short-duration ground passes [3] (although longer contacts may be made via relay satellite networks such as TDRSS). Satellite constellations, such as those of satellite navigation systems, may be designed so that a minimum subset of the constellation is always visible from any point on the Earth, thereby providing continuous coverage. [2]

Prediction and visibility

A number of web-based and mobile applications produce predictions of passes for known satellites. [6] In order to be observed with the naked eye, a spacecraft must reflect sunlight towards the observer; thus, naked-eye observations are generally restricted to twilight hours, during which the spacecraft is in sunlight but the observer is not. A satellite flare occurs when sunlight is reflected by flat surfaces on the spacecraft. The International Space Station, the largest artificial satellite of Earth, has a maximum apparent magnitude of –5.9, [7] brighter than the planet Venus. [8]

See also

Related Research Articles

A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator. On the day of the equinox, the Sun appears to rise "due east" and set "due west". This occurs twice each year, around 20 March and 23 September.

Satellite Human-made object put into an orbit

In the context of spaceflight, a satellite is an object that has been intentionally placed into orbit. These objects are called artificial satellites to distinguish them from natural satellites such as Earth's Moon.

Communications satellite Artificial satellite that relays radio signals

A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. As of 1 January 2021, there are 2,224 communications satellites in Earth orbit. Most communications satellites are in geostationary orbit 22,300 miles (35,900 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite.

Celestial navigation Navigation using astronomical objects to determine position

Celestial navigation, also known as astronavigation, is the ancient and continuing modern practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space without having to rely solely on estimated positional calculations, commonly known as "dead reckoning", made in the absence of GNSS or other similar modern electronic or digital positioning means.

Occultation Occlusion of an object by another object that passes between it and the observer

An occultation is an event that occurs when one object is hidden by another object that passes between it and the observer. The term is often used in astronomy, but can also refer to any situation in which an object in the foreground blocks from view (occults) an object in the background. In this general sense, occultation applies to the visual scene observed from low-flying aircraft when foreground objects obscure distant objects dynamically, as the scene changes over time.

Molniya orbit Type of high-latitude satellite orbit

A Molniya orbit is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an inclination of 63.4 degrees, an argument of perigee of 270 degrees, and an orbital period of approximately half a sidereal day. The name comes from the Molniya satellites, a series of Soviet/Russian civilian and military communications satellites which have used this type of orbit since the mid-1960s.

Tracking and Data Relay Satellite System USA

The U.S. Tracking and Data Relay Satellite System (TDRSS) is a network of American communications satellites and ground stations used by NASA for space communications. The system was designed to replace an existing network of ground stations that had supported all of NASA's crewed flight missions. The prime design goal was to increase the time spacecraft were in communication with the ground and improve the amount of data that could be transferred. Many Tracking and Data Relay Satellites were launched in the 1980s and 1990s with the Space Shuttle and made use of the Inertial Upper Stage, a two-stage solid rocket booster developed for the shuttle. Other TDRS were launched by Atlas IIa and Atlas V rockets.

Lacrosse (satellite) Series of American terrestrial radar imaging reconnaissance satellites

Lacrosse or Onyx is a series of terrestrial radar imaging reconnaissance satellites operated by the United States National Reconnaissance Office (NRO). While not officially confirmed by the NRO or the Government of the United States prior to 2008, there was widespread evidence pointing to its existence, including one NASA website. In July 2008, the NRO itself declassified the existence of its synthetic aperture radar (SAR) satellite constellation.

Night sky Appearance of the sky in a clear night

The term night sky, usually associated with astronomy from Earth, refers to the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.

Ground station Terrestrial radio station for communication with spacecraft

A ground station, Earth station, or Earth terminal is a terrestrial radio station designed for extraplanetary telecommunication with spacecraft, or reception of radio waves from astronomical radio sources. Ground stations may be located either on the surface of the Earth, or in its atmosphere. Earth stations communicate with spacecraft by transmitting and receiving radio waves in the super high frequency (SHF) or extremely high frequency (EHF) bands. When a ground station successfully transmits radio waves to a spacecraft, it establishes a telecommunications link. A principal telecommunications device of the ground station is the parabolic antenna.

Satellite flare Visual phenomenon caused by satellites

Satellite flare, also known as satellite glint, is a satellite pass visible to the naked eye as a brief, bright "flare". It is caused by the reflection toward the Earth below of sunlight incident on satellite surfaces such as solar panels and antennas. Streaks from satellite flare are a form of light pollution that can negatively impact ground-based astronomy, stargazing, and indigenous people.

Solar Orbiter European space-based solar observatory

The Solar Orbiter (SolO) is a Sun-observing satellite developed by the European Space Agency (ESA). SolO, designed to obtain detailed measurements of the inner heliosphere and the nascent solar wind, will also perform close observations of the polar regions of the Sun which is difficult to do from Earth. These observations are important in investigating how the Sun creates and controls its heliosphere.

Ajisai is a Japanese satellite sponsored by NASDA, launched in 1986 on the first flight of the H-I rocket. It is also known as the Experimental Geodetic Satellite (EGS), as it carried the Experimental Geodetic Payload (EGP).

Ground track Path on the surface of the Earth or another body directly below an aircraft or satellite

A ground track or ground trace is the path on the surface of a planet directly below an aircraft's or satellite's trajectory. In the case of satellites, it is also known as a suborbital track, and is the vertical projection of the satellite's orbit onto the surface of the Earth.

Satellite watching Activity involving the observation and tracking of artificial satellites

Satellite watching or satellite spotting is a hobby which consists of the observation and tracking of artificial satellites that are orbiting Earth. People with this hobby are variously called satellite watchers, trackers, spotters, observers, etc. Since satellites outside Earth's shadow reflect sunlight, those especially in low Earth orbit may visibly glint as they traverse the observer's sky, usually during twilight.

Ground segment Ground-based elements of a spacecraft system

A ground segment consists of all the ground-based elements of a spacecraft system used by operators and support personnel, as opposed to the space segment and user segment. The ground segment enables management of a spacecraft, and distribution of payload data and telemetry among interested parties on the ground. The primary elements of a ground segment are:

Mars Cube One Mars flyby mission

Mars Cube One was a Mars flyby mission launched on 5 May 2018 alongside NASA's InSight Mars lander mission. It consisted of two nanospacecraft, MarCO-A and MarCO-B, that provided a real-time communications link to Earth for InSight during its entry, descent, and landing (EDL) on 26 November 2018 - when InSight was out of line of sight from the Earth. Both spacecraft were 6U CubeSats, and the mission was a test of new miniaturized communications and navigation technologies. These were the first CubeSats to operate beyond Earth orbit, and aside from telecommunications they also tested CubeSats' endurance in deep space. On 5 February 2019, NASA reported that both the CubeSats had gone silent by 5 January 2019, and are unlikely to be heard from again. In August 2019, the CubeSats were honored for their role in the successful landing of the InSight lander on Mars.

WT1190F

WT1190F was a small temporary satellite of Earth that impacted Earth on 13 November 2015 at 06:18:34.3 UTC. It is thought to have been space debris from the trans-lunar injection stage of the 1998 Lunar Prospector mission. It was first discovered on 18 February 2013 by the Catalina Sky Survey. It was then lost, and reacquired on 29 November 2013. It was again discovered on 3 October 2015 by astronomer Rose Garcia with the Catalina Sky Survey 60-inch telescope, and the object was soon identified to be the same as the two objects previously sighted by the team, who have been sharing their data through the International Astronomical Union's Minor Planet Center (MPC). An early orbit calculation showed that it was orbiting Earth in an extremely elliptical orbit, taking it from within the geosynchronous satellite ring to nearly twice the distance of the Moon. It was also probably the same object as 9U01FF6, another object on a similar orbit discovered on 26 October 2009.

Tianlian also known as CTDRS, is a Chinese data relay communication satellite constellation. The constellation serves to relay data from ground stations to spacecraft and rockets, most significantly China's crewed spaceflight program. The system currently consists of seven satellites in two generations, with the first satellite being launched in 2008.

References

  1. 1 2 "AOS, TCA, and LOS". Northern Lights Software Associates. Retrieved 17 November 2015.
  2. 1 2 Wood, Lloyd (July 2006). Introduction to satellite constellations: Orbital types, uses and related facts (PDF). ISU Summer Session. Retrieved 17 November 2015.
  3. 1 2 Del Re, Encrico; Pierucci, Laura, eds. (6 December 2012). Satellite Personal Communications for Future-generation Systems. Springer. p. 19. ISBN   978-1447101314 . Retrieved 17 November 2015.
  4. Richharia, Madhavendra (2014). Mobile Satellite Communications: Principles and Trends (Second ed.). Wiley. pp. 106–107. ISBN   978-1118810064 . Retrieved 17 November 2015.
  5. Montenbruck, Oliver; Eberhard, Gill (2012). Satellite Orbits: Models, Methods, and Applications. Springer. p. 229. ISBN   978-3642583513 . Retrieved 17 November 2015.
  6. Dickinson, David (July 11, 2013). "How to Spot and Track Satellites". Universe Today . Retrieved 17 November 2015.
  7. "ISS Information - Heavens-above.com". Heavens-above. Retrieved 2007-12-22.
  8. "HORIZONS Web Interface". Solar System Dynamics. Jet Propulsion Laboratory . Retrieved 13 July 2016.