Astrobotany is an applied sub-discipline of botany that is the study of plants in space environments. It is a branch of astrobiology and botany.
Astrobotany concerns both the study of extraterrestrial vegetation discovery, as well as research into the growth of terrestrial vegetation in outer space by humans. [1]
It has been a subject of study that plants may be grown in outer space typically in a weightless but pressurized controlled environment in specific space gardens. [2] In the context of human spaceflight, they can be consumed as food and/or provide a refreshing atmosphere. [3] Plants can metabolize carbon dioxide in the air to produce valuable oxygen, and can help control cabin humidity. [4] Growing plants in space may provide a psychological benefit to human spaceflight crews. [4]
The first challenge in growing plants in space is how to get plants to grow without gravity. [5] This runs into difficulties regarding the effects of gravity on root development, providing appropriate types of lighting, and other challenges. In particular, the nutrient supply to root as well as the nutrient biogeochemical cycles, and the microbiological interactions in soil-based substrates are particularly complex, but have been shown to make possible space farming in hypo- and micro-gravity. [6] [7]
NASA plans to grow plants in space to help feed astronauts, and to provide psychological benefits for long-term space flight. [8]
The vegetation red edge (VRE) is a biosignature of near-infrared wavelengths that is observable through telescopic observation of Earth, and has increased in strength as evolution has made vegetative life more complex. [10] On Earth, this phenomenon has been detected through analysis of planetshine on the Moon, which can show a reflection spectrum that spikes at 700 nm. [10] In an article published in Nature in 1990, Sagan et al. described Galileo's detection of infrared light radiating from Earth as evidence of "widespread biological activity" [11] on earth, with evidence of photosynthesis a particularly strong factor.
The increase-in-strength of Earth's VRE biosignature has been assessed through modelling of early Earth radiation. [10] Mosses and ferns, which were dominant on Earth in the Ordovician and Carboniferous periods, produce weaker detectable infrared radiation spikes at 700 nm than modern Earth vegetation. [10] Astrobotanists focused on extraterrestrial vegetation have thus theorized that by using these same models, it could be possible to measure whether exoplanets in their respective Goldilocks zones currently hold vegetation, and by comparing VRE biosignatures to modelled historic Earth radiation, estimate the complexity of this vegetation. [12]
There are a number of obstacles to the detection of exoplanetary VREs:
Dubbed ‘the creator of astrobotany’, [1] Gavriil Adrianovich Tikhov coined the term in 1945 to describe the emerging field surrounding the search for extraterrestrial vegetation. Owing to storms on Mars that cause surface darkening visible from Earth, Tikhov's contemporaries often believed in the existence of Martian vegetation comparable to Earth's seasonal vegetation color changes. [14] [1] Building off of conclusions reached through examining earthshine on the Moon in 1914, in 1918 and 1921 Tikhov discovered through using telescopic color filters that chlorophylls were undetectable on the Martian surface, leading him to hypothesize that the character of Martian vegetation was likely to be blue hued, composed mostly of mosses and lichens. [1] Tikhov's research into astrobotany would later develop into research into growing plants in space, or demonstrating the possibility of plants to grow in extraterrestrial conditions (especially comparing the climate of Mars and Siberia), but he was the first known astronomer to use color to attempt to measure the level of vegetation on an extraterrestrial satellite. [1]
After Galileo's 1990 fly-by demonstrating the VRE effect on Earth, astrobotanical interest in extraterrestrial vegetation has mainly focused on examining the feasibility of VRE detection, [10] [13] [15] [16] and a number of projects have been proposed:
The James Webb Space Telescope has been searching the TRAPPIST-1 exoplanet system since 2021 for signs of extraterrestrial vegetation through capturing atmospheric data, including a VRE biosignature, that is made visible when TRAPPIST-1's exoplanets pass across the face of the star. NASA have judged three of TRAPPIST-1's rocky exoplanets (1e, 1f, and 1g) as within the habitable zone for liquid water (and other biological matter, such as vegetation). [16] [21]
Accurate description of extraterrestrial vegetation character is highly speculative, but follows "solid physics and atmospheric chemistry" principles, according to Professor John Albert Raven from the University of Dundee. [17]
One factor determining the character of extraterrestrial vegetation is the star at the centre of the system. The Sun is a G-type main-sequence star, which provides the conditions for chlorophyll photosynthesis, and radiation levels that govern atmospheric conditions such as wind, affecting evolutionary development. TRAPPIST-1 is an ultra-cool red dwarf star, providing almost half the energy as the Sun, leading to astrobotanical speculation that vegetation in the TRAPPIST-1 exoplanet system could be much darker, even black to human eyes. [14]
F-type main-sequence stars, on the other hand, such as sigma Boötis, have been speculated to encourage the growth of either yellow-tinted, [17] or blue-tinted [14] [22] extraterrestrial vegetation within its exoplanet system, in order to reflect back the high levels of blue photons emitted by stars of its type.
The study of plant response in space environments is another subject of astrobotany research. In space, plants encounter unique environmental stressors not found on Earth including microgravity, ionizing radiation, and oxidative stress. [23] Experiments have shown that these stressors cause genetic alterations in plant metabolism pathways. Changes in genetic expression have shown that plants respond on a molecular level to a space environment. [24] Astrobotanical research has been applied to the challenges of creating life support systems both in space and on other planets, primarily Mars.
Russian scientist Konstantin Tsiolkovsky was one of the first people to discuss using photosynthetic life as a resource in space agricultural systems. Speculation about plant cultivation in space has been around since the early 20th century. [25] The term astrobotany was first used in 1945 by Soviet astronomer and astrobiology pioneer Gavriil Adrianovich Tikhov. [1] Tikhov is considered to be the father of astrobotany. Research in the field has been conducted both with growing Earth plants in space environments and searching for botanical life on other planets.
The first organisms in space were "specially developed strains of seeds" launched to 134 km (83 mi) on 9 July 1946 on a U.S. launched V-2 rocket. These samples were not recovered. The first seeds launched into space and successfully recovered were maize seeds launched on 30 July 1946, which were soon followed by rye and cotton. These early suborbital biological experiments were handled by Harvard University and the Naval Research Laboratory and were concerned with radiation exposure on living tissue. [26] In 1971, 500 tree seeds (Loblolly pine, Sycamore, Sweetgum, Redwood, and Douglas fir) were flown around the Moon on Apollo 14. These Moon trees were planted and grown with controls back on Earth where no changes were detected.
In 1982, the crew of the Soviet Salyut 7 space station conducted an experiment, prepared by Lithuanian scientists (Alfonsas Merkys and others), and grew some Arabidopsis using Fiton-3 experimental micro-greenhouse apparatus, thus becoming the first plants to flower and produce seeds in space. [27] [28] A Skylab experiment studied the effects of gravity and light on rice plants. [29] [30] The SVET-2 Space Greenhouse successfully achieved seed to seed plant growth in 1997 aboard space station Mir . [4] Bion 5 carried Daucus carota and Bion 7 carried maize (aka corn).
Plant research continued on the International Space Station. Biomass Production System was used on the ISS Expedition 4. The Vegetable Production System (Veggie) system was later used aboard ISS. [31] Plants tested in Veggie before going into space included lettuce, Swiss chard, radishes, Chinese cabbage and peas. [32] Red Romaine lettuce was grown in space on Expedition 40 which were harvested when mature, frozen and tested back on Earth. Expedition 44 members became the first American astronauts to eat plants grown in space on 10 August 2015, when their crop of Red Romaine was harvested. [33] Since 2003 Russian cosmonauts have been eating half of their crop while the other half goes towards further research. [34] In 2012, a sunflower bloomed aboard the ISS under the care of NASA astronaut Donald Pettit. [35] In January 2016, US astronauts announced that a zinnia had blossomed aboard the ISS. [36]
in 2018 the Veggie-3 experiment was tested with plant pillows and root mats. [37] One of the goals is to grow food for crew consumption. [38] Crops tested at this time include cabbage, lettuce, and mizuna. [39]
Plants that have been grown in space include:
Some plants, like tobacco and morning glory, have not been directly grown in space but have been subjected to space environments and then germinated and grown on Earth. [50]
Algae was the first candidate for human-plant life support systems. Initial research in the 1950s and 1960s used Chlorella, Anacystis, Synechocystis, Scenedesmus, Synechococcus, and Spirulina species to study how photosynthetic organisms could be used for O2 and CO2 cycling in closed systems. [51] Later research through Russia's BIOS program and the US's CELSS program investigated the use of higher plants to fulfill the roles of atmospheric regulators, waste recyclers, and food for sustained missions. The crops most commonly studied include starch crops such as wheat, potato, and rice; protein-rich crops such as soy, peanut, and common bean; and a host of other nutrition-enhancing crops like lettuce, strawberry, and kale. [52] Tests for optimal growth conditions in closed systems have required research both into environmental parameters necessary for particular crops (such as differing light periods for short-day versus long-day crops) and cultivars that are a best-fit for life support system growth.
Tests of human-plant life support systems in space are relatively few compared to similar testing performed on Earth and micro-gravity testing on plant growth in space. The first life support systems testing performed in space included gas exchange experiments with wheat, potato, and giant duckweed (Spyrodela polyrhiza). Smaller scale projects, sometimes referred to as "salad machines", have been used to provide fresh produce to astronauts as a dietary supplement. [51] Future studies have been planned to investigate the effects of keeping plants on the mental well-being of humans in confined environments. [53]
More recent research has been focused on extrapolating these life support systems to other planets, primarily Martian bases. Interlocking closed systems called "modular biospheres" have been prototyped to support four- to five-person crews on the Martian surface. [54] These encampments are designed as inflatable greenhouses and bases. [55] They are anticipated to use Martian soils for growth substrate and wastewater treatment, and crop cultivars developed specifically for extraplanetary life. [56] There has also been discussion of using the Martian moon Phobos as a resources base, potentially mining frozen water and carbon dioxide from the surface and eventually using hollowed craters for autonomous growth chambers that can be harvested during mining missions. [55]
The study of plant research has yielded information useful to other areas of botany and horticulture. Extensive research into hydroponics systems was fielded successfully by NASA in both the CELSS and ALS programs, as well as the effects of increased photoperiod and light intensity for various crop species. [51] Research also led to optimization of yields beyond what had been previously achieved by indoor cropping systems. Intensive studying of gas exchange and plant volatile concentrations in closed systems led to increased understanding of plant response to extreme levels of gases such as carbon dioxide and ethylene. Usage of LEDs in closed life support systems research also prompted the increased use of LEDs in indoor growing operations. [57]
This section needs expansionwith: For every experiment add when and where.. You can help by adding to it. (January 2016) |
Some experiments to do with plants include:
Several experiments have been focused on how plant growth and distribution compares in micro-gravity, space conditions versus Earth conditions. This enables scientists to explore whether certain plant growth patterns are innate or environmentally driven. For instance, Allan H. Brown tested seedling movements aboard the Space Shuttle Columbia in 1983. Sunflower seedling movements were recorded while in orbit. They observed that the seedlings still experienced rotational growth and circumnation despite lack of gravity, showing these behaviors are built-in. [66]
Other experiments have found that plants have the ability to exhibit gravitropism, even in low-gravity conditions. For instance, the ESA's European Modular Cultivation System [67] enables experimentation with plant growth; acting as a miniature greenhouse, scientists aboard the International Space Station can investigate how plants react in variable-gravity conditions. The Gravi-1 experiment (2008) utilized the EMCS to study lentil seedling growth and amyloplast movement on the calcium-dependent pathways. [68] The results of this experiment found that the plants were able to sense the direction of gravity even at very low levels. [69] A later experiment with the EMCS placed 768 lentil seedlings in a centrifuge to stimulate various gravitational changes; this experiment, Gravi-2 (2014), displayed that plants change calcium signalling towards root growth while being grown in several gravity levels. [70]
Many experiments have a more generalized approach in observing overall plant growth patterns as opposed to one specific growth behavior. One such experiment from the Canadian Space Agency, for example, found that white spruce seedlings grew differently in the anti-gravity space environment compared with Earth-bound seedlings; [71] the space seedlings exhibited enhanced growth from the shoots and needles, and also had randomized amyloplast distribution compared with the Earth-bound control group. [72]
Astrobotany has had several acknowledgements in science fiction literature and film.
Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.
Extraterrestrial life, or alien life, is life that originates from another world rather than on Earth. No extraterrestrial life has yet been scientifically conclusively detected. Such life might range from simple forms such as prokaryotes to intelligent beings, possibly bringing forth civilizations that might be far more, or far less, advanced than humans. The Drake equation speculates about the existence of sapient life elsewhere in the universe. The science of extraterrestrial life is known as astrobiology.
The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no conclusive evidence of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.
The Destiny module, also known as the U.S. Lab, is the primary operating facility for U.S. research payloads aboard the International Space Station (ISS). It was berthed to the forward port of the Unity module and activated over a period of five days in February, 2001. Destiny is NASA's first permanent operating orbital research station since Skylab was vacated in February 1974.
A biosignature is any substance – such as an element, isotope, molecule, or phenomenon – that provides scientific evidence of past or present life on a planet. Measurable attributes of life include its physical or chemical structures, its use of free energy, and the production of biomass and wastes.
Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.
EXPOSE is a multi-user facility mounted outside the International Space Station (ISS) dedicated to astrobiology. EXPOSE was developed by the European Space Agency (ESA) for long-term spaceflights and was designed to allow exposure of chemical and biological samples to outer space while recording data during exposure.
TROPI, or "Analysis of a Novel Sensory Mechanism in Root Phototropism", is an experiment on the International Space Station (ISS) to investigate the growth and development of plant seedlings under various gravity and lighting combinations. It was launched on Space Shuttle Endeavour during the STS-130 mission and was performed on the ISS during Expedition 22. Frozen plant samples from the TROPI experiment were returned on the landing of the STS-131 mission on Space Shuttle Discovery.
Astrobiology Science and Technology for Exploring Planets (ASTEP) was a program established by NASA to sponsor research projects that advance the technology and techniques used in planetary exploration. The objective was to enable the study of astrobiology and to aid the planning of extraterrestrial exploration missions while prioritizing science, technology, and field campaigns.
Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.
Space farming refers to the cultivation of crops for food and other materials in space or on off-Earth celestial objects – equivalent to agriculture on Moon.
The growth of plants in outer space has elicited much scientific interest. In the late 20th and early 21st century, plants were often taken into space in low Earth orbit to be grown in a weightless but pressurized controlled environment, sometimes called space gardens. In the context of human spaceflight, they can be consumed as food and provide a refreshing atmosphere. Plants can metabolize carbon dioxide in the air to produce valuable oxygen, and can help control cabin humidity. Growing plants in space may provide a psychological benefit to human spaceflight crews. Usually the plants were part of studies or technical development to further develop space gardens or conduct science experiments. To date plants taken into space have had mostly scientific interest, with only limited contributions to the functionality of the spacecraft, however the Apollo Moon tree project was more or less forestry inspired mission and the trees are part of a country's bicentennial celebration.
A Mars habitat is a hypothetical place where humans could live on Mars. Mars habitats would have to contend with surface conditions that include almost no oxygen in the air, extreme cold, low pressure, and high radiation. Alternatively, the habitat might be placed underground, which helps solve some problems but creates new difficulties.
The Tanpopo mission is an orbital astrobiology experiment investigating the potential interplanetary transfer of life, organic compounds, and possible terrestrial particles in the low Earth orbit. The purpose is to assess the panspermia hypothesis and the possibility of natural interplanetary transport of microbial life as well as prebiotic organic compounds.
The Carl Sagan Institute: Pale Blue Dot and Beyond was founded in 2014 at Cornell University in Ithaca, New York to further the search for habitable planets and moons in and outside the Solar System. It is focused on the characterization of exoplanets and the instruments to search for signs of life in the universe. The founder and current director of the institute is astronomer Lisa Kaltenegger.
The Vegetable Production System (Veggie) is a plant growth system developed and used by NASA in space environments. The purpose of Veggie is to provide a self-sufficient and sustainable food source for astronauts as well as a means of recreation and relaxation through therapeutic gardening. Veggie was designed in conjunction with ORBITEC and went operational aboard the International Space Station in 2014, with another Veggie module added to the ISS in 2017.
Kennda Lian Lynch is an American astrobiologist and geomicrobiologist who studies polyextremophiles. She has primarily been affiliated with NASA. She identifies environments on Earth with characteristics that may be similar to environments on other planets, and creates models that help identify characteristics that would indicate an environment might host life. Lynch also identifies what biosignatures might look like on other planets. Much of Lynch's research on analog environments has taken place in the Pilot Valley Basin in the Great Salt Desert of northwestern Utah, U.S. Her work in that paleolake basin informed the landing location of NASA's Perseverance Rover mission—at another paleolake basin called Jezero Crater. Jim Green, Chief Scientist at NASA, called Lynch "a perfect expert to be involved in the Perseverance rover." Helping to select the proper landing site for NASA's first crewed mission to Mars in 2035 is another of Lynch's projects. Lynch has appeared in multiple television series, as well as The New York Times, Nature, Scientific American, and Popular Science. Cell Press designated Lynch one of the most inspiring Black scientists in the United States.
The UK Centre for Astrobiology was set up at the University of Edinburgh in 2011 by Charles Cockell. It was set up as a UK node, formally affiliated as an international partner with the NASA Astrobiology Institute (NAI) alongside other national nodes until the NAI's dissolution in 2019. It was established as a virtual centre to sit at the interdisciplinary boundary of planetary sciences/astronomy and biological/earth sciences investigating numerous aspects of life in the universe, specifically 'how habitable worlds form in the Universe and how life emerges, proliferates and leaves traces on these worlds' as well as engaging in work on the robotic and human exploration of space and in space ethics, philosophy and governance.
MERMOZ is an astrobiology project designed to remotely detect biosignatures of life. Detection is based on molecular homochirality, a characteristic property of the biochemicals of life. The aim of the project is to remotely identify and characterize life on the planet Earth from space, and to extend this technology to other solar system bodies and exoplanets. The project began in 2018, and is a collaboration of the University of Bern, University of Leiden and Delft University of Technology.
{{cite news}}
: |last2=
has generic name (help){{cite web}}
: CS1 maint: multiple names: authors list (link)