Timeline of plant evolution

Last updated

This article attempts to place key plant innovations in a geological context. It concerns itself only with novel adaptations and events that had a major ecological significance, not those that are of solely anthropological interest. The timeline displays a graphical representation of the adaptations; the text attempts to explain the nature and robustness of the evidence.

Contents

Plant evolution is an aspect of the study of biological evolution, predominantly involving evolution of plants suited to live on land, greening of various land masses by the filling of their niches with land plants, and diversification of groups of land plants.

Earliest plants

In the strictest sense, the name plant refers to those land plants that form the clade Embryophyta, comprising the bryophytes and vascular plants. However, the clade Viridiplantae or green plants includes some other groups of photosynthetic eukaryotes, including green algae. It is widely believed that land plants evolved from a group of charophytes, most likely simple single-celled terrestrial algae similar to extant Klebsormidiophyceae. [1]

Chloroplasts in plants evolved from an endosymbiotic relationship between a cyanobacterium, a photosynthesising prokaryote and a non-photosynthetic eukaryotic organism, producing a lineage of photosynthesizing eukaryotic organisms in marine and freshwater environments. These earliest photosynthesizing single-celled autotrophs evolved into multicellular organisms such as the Charophyta, a group of freshwater green algae.

Fossil evidence of plants begins around 3000 Ma with indirect evidence of oxygen-producing photosynthesis in the geological record, in the form of chemical and isotopic signatures in rocks and fossil evidence of colonies of cyanobacteria, photosynthesizing prokaryotic organisms. Cyanobacteria use water as a reducing agent, producing atmospheric oxygen as a byproduct, and they thereby profoundly changed the early reducing atmosphere of the earth to one in which modern aerobic organisms eventually evolved. This oxygen liberated by cyanobacteria then oxidized dissolved iron in the oceans, the iron precipitated out of the sea water, and fell to the ocean floor to form sedimentary layers of oxidized iron called Banded Iron Formations (BIFs). These BIFs are part of the geological record of evidence for the evolutionary history of plants by identifying when photosynthesis originated. This also provides deep time constraints upon when enough oxygen could have been available in the atmosphere to produce the ultraviolet blocking stratospheric ozone layer. The oxygen concentration in the ancient atmosphere subsequently rose, acting as a poison for anaerobic organisms, and resulting in a highly oxidizing atmosphere, and opening up niches on land for occupation by aerobic organisms.

Fossil evidence for cyanobacteria also comes from the presence of stromatolites in the fossil record deep into the Precambrian. Stromatolites are layered structures formed by the trapping, binding, and cementation of sedimentary grains by microbial biofilms, such as those produced by cyanobacteria. The direct evidence for cyanobacteria is less certain than the evidence for their presence as primary producers of atmospheric oxygen. Modern stromatolites containing cyanobacteria can be found on the west coast of Australia and other areas in saline lagoons and in freshwater.

Paleozoic flora

Cambrian flora

Early plants were small, unicellular or filamentous, with simple branching. The identification of plant fossils in Cambrian strata is an uncertain area in the evolutionary history of plants because of the small and soft-bodied nature of these plants. It is also difficult in a fossil of this age to distinguish among various similar appearing groups with simple branching patterns, and not all of these groups are plants. One exception to the uncertainty of fossils from this age is the group of calcareous green algae, Dasycladales found in the fossil record since the middle Cambrian. These algae do not belong to the lineage that is ancestral to the land plants. Other major groups of green algae had been established by this time, but there were no land plants with vascular tissues until the mid-Silurian.

Ordovician flora

The evidence of plant evolution changes dramatically in the Ordovician with the first extensive appearance of embryophyte spores in the fossil record. The earliest terrestrial plants lived during the Middle Ordovician around 470  million years ago, based on their fossils found in the form of monads and spores, with resistant polymers in their outer walls, from Turkey, Saudi Arabia and Argentina. [3] [4] Individual trilete spores resembling those of modern cryptogamic plants and vascular plants first appeared in the fossil record from the Late Ordovician. [5] [6] These plants probably resembled liverworts, [4] and did not have any conducting tissues. [7] They were able to reproduce with spores, important dispersal units that have hard protective outer coatings which not only allowed their preservation in the fossil record, but also protected them from the UV light, desiccating environment and possible microorganism attack. [4]

Silurian flora

Artist's impression of Cooksonia pertoni Cooksonia pertoni revised.png
Artist's impression of Cooksonia pertoni

The first fossil records of vascular plants, that is, land plants with vascular tissues, appeared in the Silurian period. The earliest known representatives of this group (mostly from the northern hemisphere) are placed in the genus Cooksonia . They had very simple branching patterns, with the branches terminated by flattened sporangia. By the end of the Silurian much more complex vascular plants, the zosterophylls, had diversified [8] and primitive lycopods, such as Baragwanathia (originally discovered in Silurian deposits in Victoria, Australia), [9] had become widespread.

Devonian flora

By the Devonian Period, the colonization of the land by plants was well underway. The bacterial and algal mats were joined early in the period by primitive plants that created the first recognizable soils and harbored some arthropods like mites, scorpions and myriapods. Early Devonian plants did not have roots or leaves like the plants most common today, and many had no vascular tissue at all. They probably relied on arbuscular mycorrhizal symbioses with fungi to provide them with water and mineral nutrients such as phosphorus. [10] [11] They probably spread by a combination of vegetative reproduction forming clonal colonies, and sexual reproduction via spores and did not grow much more than a few centimeters tall.

By the Late Devonian, forests of large, primitive plants existed: lycophytes, sphenophytes, ferns, and progymnosperms had evolved. Most of these plants have true roots and leaves, and many were quite tall. The tree-like Archaeopteris , ancestral to the gymnosperms, and the giant cladoxylopsid trees had true wood. These are the oldest known trees of the world's first forests. Prototaxites was the fruiting body of an enormous fungus that stood more than 8 meters tall. By the end of the Devonian, the first seed-forming plants had appeared. This rapid appearance of so many plant groups and growth forms has been called the "Devonian Explosion". The primitive arthropods co-evolved with this diversified terrestrial vegetation structure. The evolving co-dependence of insects and seed-plants that characterizes a recognizably modern world had its genesis in the late Devonian. The development of soils and plant root systems probably led to changes in the speed and pattern of erosion and sediment deposition.

The 'greening' of the continents acted as a carbon dioxide sink, and atmospheric concentrations of this greenhouse gas may have dropped. [12] This may have cooled the climate and led to a massive extinction event. see Late Devonian extinction.

Also in the Devonian, both vertebrates and arthropods were solidly established on the land.

Carboniferous flora

Stigmaria, a fossil tree root. Upper Carboniferous of northeastern Ohio. StigmariaOhioPennsylvanian.jpg
Stigmaria, a fossil tree root. Upper Carboniferous of northeastern Ohio.
External mold of Lepidodendron from the Upper Carboniferous of Ohio. LepidodendronOhio.jpg
External mold of Lepidodendron from the Upper Carboniferous of Ohio.

Early Carboniferous land plants were very similar to those of the preceding Latest Devonian, but new groups also appeared at this time.

The main Early Carboniferous plants were the Equisetales (Horse-tails), Sphenophyllales (scrambling plants), Lycopodiales (Club mosses), Lepidodendrales (arborescent clubmosses or scale trees), Filicales (Ferns), Medullosales (previously included in the "seed ferns", an artificial assemblage of a number of early gymnosperm groups) and the Cordaitales. These continued to dominate throughout the period, but during late Carboniferous, several other groups, Cycadophyta (cycads), the Callistophytales (another group of "seed ferns"), and the Voltziales (related to and sometimes included under the conifers), appeared.

The Carboniferous lycophytes of the order Lepidodendrales, which were cousins (but not ancestors) of the tiny club-mosses of today, were huge trees with trunks 30 meters high and up to 1.5 meters in diameter. These included Lepidodendron (with its fruit cone called Lepidostrobus ), Halonia , Lepidophloios and Sigillaria . The roots of several of these forms are known as Stigmaria .

The fronds of some Carboniferous ferns are almost identical with those of living species. Probably many species were epiphytic. Fossil ferns include Pecopteris and the tree ferns Megaphyton and Caulopteris . Seed ferns or Pteridospermatophyta include Cyclopteris , Neuropteris , Alethopteris , and Sphenopteris .

The Equisetales included the common giant form Calamites , with a trunk diameter of 30 to 60 cm and a height of up to 20 meters. Sphenophyllum was a slender climbing plant with whorls of leaves, which was probably related both to the calamites and the modern horsetails.

Cordaites , a tall plant (6 to over 30 meters) with strap-like leaves, was related to the cycads and conifers; the catkin-like inflorescence, which bore yew-like berries, is called Cardiocarpus . These plants were thought to live in swamps and mangroves. True coniferous trees ( Walchia , of the order Voltziales) appear later in the Carboniferous, and preferred higher drier ground.

Permian flora

The Permian began with the Carboniferous flora still flourishing. About the middle of the Permian there was a major transition in vegetation. The swamp-loving lycopod trees of the Carboniferous, such as Lepidodendron and Sigillaria , were replaced by the more advanced conifers, which were better adapted to the changing climatic conditions. Lycopods and swamp forests still dominated the South China continent because it was an isolated continent and it sat near or at the equator. The Permian saw the radiation of many important conifer groups, including the ancestors of many present-day families. The ginkgos and cycads also appeared during this period. Rich forests were present in many areas, with a diverse mix of plant groups. The gigantopterids thrived during this time; some of these may have been part of the ancestral flowering plant lineage, though flowers evolved only considerably later.

Mesozoic flora

Triassic flora

On land, the holdover plants included the lycophytes, the dominant cycads, Ginkgophyta (represented in modern times by Ginkgo biloba ) and glossopterids. The spermatophytes, or seed plants came to dominate the terrestrial flora: in the northern hemisphere, conifers flourished. Dicroidium (a seed fern) was the dominant southern hemisphere tree during the Early Triassic period.

Jurassic flora

The arid, continental conditions characteristic of the Triassic steadily eased during the Jurassic period, especially at higher latitudes; the warm, humid climate allowed lush jungles to cover much of the landscape. [13] Conifers dominated the flora, as during the Triassic; they were the most diverse group and constituted the majority of large trees. Extant conifer families that flourished during the Jurassic included the Araucariaceae, Cephalotaxaceae, Pinaceae, Podocarpaceae, Taxaceae and Taxodiaceae. [14] The extinct Mesozoic conifer family Cheirolepidiaceae dominated low latitude vegetation, as did the shrubby Bennettitales. [15] Cycads were also common, as were ginkgos and tree ferns in the forest. Smaller ferns were probably the dominant undergrowth. Caytoniaceous seed ferns were another group of important plants during this time and are thought to have been shrub to small-tree sized. [16] Ginkgo-like plants were particularly common in the mid- to high northern latitudes. In the Southern Hemisphere, podocarps were especially successful, while Ginkgos and Czekanowskiales were rare. [15] [17]

Cretaceous flora

Artist's restoration of Archaeamphora longicervia, the earliest known carnivorous plant Archaeamphora longicervia.png
Artist's restoration of Archaeamphora longicervia , the earliest known carnivorous plant

Flowering plants, also known as angiosperms, spread during this period, although they did not become predominant until near the end of the period (Campanian age). [18] Their evolution was aided by the appearance of bees; in fact angiosperms and insects are a good example of coevolution. The first representatives of many modern trees, including figs, planes and magnolias, appeared in the Cretaceous. At the same time, some earlier Mesozoic gymnosperms, like Conifers continued to thrive, although other taxa like Bennettitales died out before the end of the period.

Cenozoic flora

The Cenozoic began at the Cretaceous–Paleogene extinction event with a massive disruption of plant communities. It then became just as much the age of savannas, or the age of co-dependent flowering plants and insects. At 35 Ma, grasses evolved from among the angiosperms. About ten thousand years ago, humans in the Fertile Crescent of the Middle East develop agriculture. Plant domestication begins with cultivation of Neolithic founder crops. This process of food production, coupled later with the domestication of animals caused a massive increase in human population that has continued to the present. In Jericho (modern Israel), there is a settlement with about 19,000 people. At the same time, Sahara is green with rivers, lakes, cattle, crocodiles and monsoons. At 8 ka, Common (Bread) wheat ( Triticum aestivum ) originates in southwest Asia due to hybridisation of emmer wheat with a goat-grass, Aegilops tauschii . At 6.5 ka, two rice species are domesticated: Asian rice, Oryza sativa , and African rice Oryza glaberrima .

Species differentiation

See also

Related Research Articles

<span class="mw-page-title-main">Devonian</span> Fourth period of the Paleozoic Era 419–359 million years ago

The Devonian is a geologic period and system of the Paleozoic era during the Phanerozoic eon, spanning 60.3 million years from the end of the preceding Silurian period at 419.2 million years ago (Ma), to the beginning of the succeeding Carboniferous period at 358.9 Ma. It is named after Devon, South West England, where rocks from this period were first studied.

The PaleozoicEra is the first of three geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic and ends 251.9 Ma at the start of the Mesozoic Era. The Paleozoic is subdivided into six geologic periods :

The Phanerozoic is the current and the latest of the four geologic eons in the Earth's geologic time scale, covering the time period from 538.8 million years ago to the present. It is the eon during which abundant animal and plant life has proliferated, diversified and colonized various niches on the Earth's surface, beginning with the Cambrian period when animals first developed hard shells that can be clearly preserved in the fossil record. The time before the Phanerozoic, collectively called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

<span class="mw-page-title-main">Lycopodiopsida</span> Class of vascular plants

Lycopodiopsida is a class of vascular plants known as lycopods, lycophytes or other terms including the component lyco-. Members of the class are also called clubmosses, firmosses, spikemosses and quillworts. They have dichotomously branching stems bearing simple leaves called microphylls and reproduce by means of spores borne in sporangia on the sides of the stems at the bases of the leaves. Although living species are small, during the Carboniferous, extinct tree-like forms (Lepidodendrales) formed huge forests that dominated the landscape and contributed to coal deposits.

<span class="mw-page-title-main">Gymnosperm</span> Clade of non-flowering, naked-seeded vascular plants

The gymnosperms are a group of seed-producing plants that includes conifers, cycads, Ginkgo, and gnetophytes, forming the clade Gymnospermae. The term gymnosperm comes from the composite word in Greek: γυμνόσπερμος, literally meaning 'naked seeds'. The name is based on the unenclosed condition of their seeds. The non-encased condition of their seeds contrasts with the seeds and ovules of flowering plants (angiosperms), which are enclosed within an ovary. Gymnosperm seeds develop either on the surface of scales or leaves, which are often modified to form cones, or on their own as in yew, Torreya, Ginkgo. Gymnosperm lifecycles involve alternation of generations. They have a dominant diploid sporophyte phase and a reduced haploid gametophyte phase which is dependent on the sporophytic phase. The term "gymnosperm" is often used in paleobotany to refer to all non-angiosperm seed plants. In that case, to specify the modern monophyletic group of gymnosperms, the term Acrogymnospermae is sometimes used.

<span class="mw-page-title-main">Embryophyte</span> Subclade of green plants, also known as land plants

The embryophytes are a clade of plants, also known as Embryophyta or land plants. They are the most familiar group of photoautotrophs that make up the vegetation on Earth's dry lands and wetlands. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of freshwater charophyte green algae as a sister taxon of Charophyceae, Coleochaetophyceae and Zygnematophyceae. Embryophytes consist of the bryophytes and the polysporangiophytes. Living embryophytes include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and angiosperms. Embryophytes have diplobiontic life cycles.

<span class="mw-page-title-main">Paleobotany</span> Study of organic evolution of plants based on fossils

Paleobotany, also spelled as palaeobotany, is the branch of botany dealing with the recovery and identification of plant remains from geological contexts, and their use for the biological reconstruction of past environments (paleogeography), and the evolutionary history of plants, with a bearing upon the evolution of life in general. A synonym is paleophytology. It is a component of paleontology and paleobiology. The prefix palaeo- or paleo- means "ancient, old", and is derived from the Greek adjective παλαιός, palaios. Paleobotany includes the study of terrestrial plant fossils, as well as the study of prehistoric marine photoautotrophs, such as photosynthetic algae, seaweeds or kelp. A closely related field is palynology, which is the study of fossilized and extant spores and pollen.

<i>Archaeopteris</i> Extinct genus of Devonian vascular plants

Archaeopteris is an extinct genus of progymnosperm tree with fern-like leaves. A useful index fossil, this tree is found in strata dating from the Upper Devonian to Lower Carboniferous, the oldest fossils being 385 million years old, and had global distribution.

<span class="mw-page-title-main">Equisetidae</span> Subclass of ferns

Equisetidae is one of the four subclasses of Polypodiopsida (ferns), a group of vascular plants with a fossil record going back to the Devonian. They are commonly known as horsetails. They typically grow in wet areas, with whorls of needle-like branches radiating at regular intervals from a single vertical stem.

In botany, a zoid or zoïd is a reproductive cell that possesses one or more flagella, and is capable of independent movement. Zoid can refer to either an asexually reproductive spore or a sexually reproductive gamete. In sexually reproductive gametes, zoids can be either male or female depending on the species. For example, some brown alga (Phaeophyceae) reproduce by producing multi-flagellated male and female gametes that recombine to form the diploid sporangia. Zoids are primarily found in some protists, diatoms, green alga, brown alga, non-vascular plants, and a few vascular plants. The most common classification group that produces zoids is the heterokonts or stramenopiles. These include green alga, brown alga, oomycetes, and some protists. The term is generally not used to describe motile, flagellated sperm found in animals. Zoid is also commonly confused for zooid which is a single organism that is part of a colonial animal.

<i>Prototaxites</i> Extinct genus of fungi

Prototaxites is an extinct genus of terrestrial fossil fungi dating from the Late Silurian until the Late Devonian periods. Prototaxites formed large trunk-like structures up to 1 metre (3 ft) wide, reaching 8 metres (26 ft) in length, made up of interwoven tubes around 50 micrometres (0.0020 in) in diameter, making it by far the largest land-dwelling organism of its time.

<span class="mw-page-title-main">Evolutionary history of plants</span> History of plants

The evolution of plants has resulted in a wide range of complexity, from the earliest algal mats of unicellular archaeplastids evolved through endosymbiosis, through multicellular marine and freshwater green algae, to spore-bearing terrestrial bryophytes, lycopods and ferns, and eventually to the complex seed-bearing gymnosperms and angiosperms of today. While many of the earliest groups continue to thrive, as exemplified by red and green algae in marine environments, more recently derived groups have displaced previously ecologically dominant ones; for example, the ascendance of flowering plants over gymnosperms in terrestrial environments.

<i>Nematothallus</i> A form genus comprising cuticle-like fossils

Nematothallus is a form genus comprising cuticle-like fossils. Some of its constituents likely represent red algae, whereas others resemble lichens.

<span class="mw-page-title-main">Nematophyta</span> Phylum of land organisms

The Nematophyta or nematophytes are a paraphyletic group of land organisms, probably including some plants as well as algae known only from the fossil record, from the Silurian period until the early Devonian Rhynie chert. The type genus Nematothallus, which typifies the group, was first described by Lang in 1937, who envisioned it being a thallose plant with tubular features and sporophytes, covered by a cuticle which preserved impressions of the underlying cells. He had found abundant disaggregated remains of all three features, none of which were connected to another, leaving his reconstruction of the phytodebris as parts of a single organism highly conjectural. No reproductive or vegetative structures common to the land plants are known, and certain members of the nematophyte plexus seem to belong to the fungi.

Ornatifilum is an artificial form genus, which is used to categorise any small, branched filaments with external ornamentation.

<span class="mw-page-title-main">Polysporangiophyte</span> Spore-bearing plants with branched sporophytes

Polysporangiophytes, also called polysporangiates or formally Polysporangiophyta, are plants in which the spore-bearing generation (sporophyte) has branching stems (axes) that bear sporangia. The name literally means 'many sporangia plant'. The clade includes all land plants (embryophytes) except for the bryophytes whose sporophytes are normally unbranched, even if a few exceptional cases occur. While the definition is independent of the presence of vascular tissue, all living polysporangiophytes also have vascular tissue, i.e., are vascular plants or tracheophytes. Extinct polysporangiophytes are known that have no vascular tissue and so are not tracheophytes.

<span class="mw-page-title-main">Plant</span> Kingdom of photosynthetic eukaryotes

Plants are the eukaryotes that form the kingdom Plantae; they are predominantly photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars from carbon dioxide and water, using the green pigment chlorophyll. Exceptions are parasitic plants that have lost the genes for chlorophyll and photosynthesis, and obtain their energy from other plants or fungi.

<span class="mw-page-title-main">Seed plant</span> Clade of seed plants

A seed plant or spermatophyte, also known as a phanerogam or a phaenogam, is any plant that produces seeds. It is a category of embryophyte that includes most of the familiar land plants, including the flowering plants and the gymnosperms, but not ferns, mosses, or algae.

Tortotubus is an early terrestrial fungus. Its growth trajectory can be ascertained from its fossils, which occur across the globe from the Ordovician to the Devonian. These fossils document foraging activities of slender, cell-wide exploratory hyphae; when these hit a source of food, they produced secondary branches that grew back down the original filament, covered themselves with an envelope, and served as pipes to shuttle nutrients to other parts of the organism. Today, mycelium with this growth pattern is observed in the mushroom-forming fungi.

<span class="mw-page-title-main">Silurian-Devonian Terrestrial Revolution</span> Period of rapid plant and fungal diversification, 428–359 million years ago

The Silurian-Devonian Terrestrial Revolution, also known as the Devonian Plant Explosion (DePE) and the Devonian explosion, was a period of rapid colonization, diversification and radiation of land plants and fungi on dry lands that occurred 428 to 359 million years ago (Mya) during the Silurian and Devonian periods, with the most critical phase occurring during the Late Silurian and Early Devonian.

References

  1. Del-Bem, Luiz-Eduardo (2018). "Xyloglucan evolution and the terrestrialization of green plants". New Phytologist. 219 (4): 1150–1153. doi: 10.1111/nph.15191 . hdl: 1843/36860 . PMID   29851097.
  2. 1 2 3 4 5 6 Labandeira, C. (2007). "The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods". Insect Science. 14 (4): 259–275. doi:10.1111/j.1744-7917.2007.00152.x.
  3. Wellman, C.H.; Gray, J. (2000). "The microfossil record of early land plants". Philosophical Transactions of the Royal Society B . 355 (1398): 717–732. doi:10.1098/rstb.2000.0612. PMC   1692785 . PMID   10905606.
  4. 1 2 3 Rubinstein, C.V.; Gerrienne, P.; de la Puente1, G.S.; Astini, R.A.; Steemans, P. (2010). "Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana)". New Phytologist. 188 (2): 365–369. doi: 10.1111/j.1469-8137.2010.03433.x . hdl: 11336/55341 .{{cite journal}}: CS1 maint: numeric names: authors list (link)
  5. Steemans, P.; Herisse, A. L.; Melvin, J.; Miller, M. A.; Paris, F.; Verniers, J.; Wellman, C. H. (2009). "Origin and Radiation of the Earliest Vascular Land Plants" (PDF). Science. 324 (5925): 353. Bibcode:2009Sci...324..353S. doi:10.1126/science.1169659. hdl: 1854/LU-697223 . ISSN   0036-8075. PMID   19372423. S2CID   206518080. Archived (PDF) from the original on 22 September 2017. Retrieved 1 November 2017.
  6. Salamon, Mariusz A.; Gerrienne, P.; Steemans, P.; Gorzelak, P.; Filipiak, P.; Hérissé, A.L.; Paris, F.; Cascales-Miñana, B.; Brachaniec, T.; Misz-Kennan, M.; Niedźwiedzki, R.; Trela, W. (2018). "Putative Late Ordovician land Plants". New Phytologist. 218 (4): 1305–1309. doi: 10.1111/nph.15091 .
  7. Edwards, D.; Wellman, C.H. (2001). "2. Embryophytes on Land: The Ordovician to Lochkovian (Lower Devonian) Record". Plants Invade the Land. Columbia University Press. pp. 3–28. doi:10.7312/gens11160-003.
  8. Kotyk, M.E.; Basinger, J.F.; Gensel, P.G. & de Freitas, T.A. (2002), "Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada", American Journal of Botany, 89 (6): 1004–1013, doi: 10.3732/ajb.89.6.1004 , PMID   21665700
  9. Lang, William H.; Cookson, Isabel C. (1935). "On a flora, including vascular land plants, associated with Monograptus, in rocks of Silurian age, from Victoria, Australia". Philosophical Transactions of the Royal Society of London B. 224 (517): 421–449. Bibcode:1935RSPTB.224..421L. doi:10.1098/rstb.1935.0004.
  10. Simon, L.; Bousquet, J.; Levesque, C.; Lalonde, M. (1993). "Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants". Nature . 363 (6424): 67–69. Bibcode:1993Natur.363...67S. doi:10.1038/363067a0. S2CID   4319766.
  11. Humphreys, Claire P.; Franks, Peter J.; Rees, Mark; Bidartondo, Martin I.; Leake, Jonathan R.; Beerling, David J. (2010-11-02). "Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants". Nature Communications. 1 (1): 103. doi:10.1038/ncomms1105. ISSN   2041-1723.
  12. Beerling, David (2008). The Emerald Planet: How Plants Changed Earth's History. Oxford University Press. ISBN   9780199548149.
  13. Haines, Tim. 2000. Walking with Dinosaurs: A Natural History, (New York: Dorling Kindersley Publishing, Inc.) ISBN   0-563-38449-2. Page 65.
  14. Behrensmeyer, Anna K., Damuth, J.D., DiMichele, W.A., Potts, R., Sues, H.D. & Wing, S.L. (eds.). 1992. Terrestrial Ecosystems through Time: the Evolutionary Paleoecology of Terrestrial Plants and Animals, (Chicago & London: University of Chicago Press), ISBN   0-226-04154-9 (cloth), ISBN   0-226-04155-7 (paper). Page 349.
  15. 1 2 Behrensmeyer et al., 1992, 352
  16. Behrensmeyer et al., 1992, 353
  17. Haines, 2000.
  18. Herendeen, Patrick S.; Friis, Else Marie; Pedersen, Kaj Raunsgaard; Crane, Peter R. (2017-03-03). "Palaeobotanical redux: revisiting the age of the angiosperms". Nature Plants. 3 (3): 17015. doi:10.1038/nplants.2017.15. ISSN   2055-0278. PMID   28260783. S2CID   205458714.