Cryptogam

Last updated
Polystichum setiferum, a fern Polystichum setiferum 001.jpg
Polystichum setiferum , a fern
Grimmia pulvinata, a moss Grimmia pulvinata 2004.11.14 14.50.37.jpg
Grimmia pulvinata , a moss
Pelvetia canaliculata, a brown alga Pelvetia canaliculata.jpg
Pelvetia canaliculata , a brown alga
Hypholoma fasciculare, a fungus Hypholoma fasciculare01.jpg
Hypholoma fasciculare , a fungus

A cryptogam (scientific name Cryptogamae) is a plant (in the wide sense of the word) or a plant-like organism that reproduces by spores, without flowers or seeds.

Contents

Taxonomy

The name Cryptogamae (from Ancient Greek κρυπτός (kruptós) 'hidden'and γαμέω (gaméō) 'to marry') means "hidden reproduction", meaning non-seed bearing plants. Other names, such as "thallophytes", "lower plants", and "spore plants" have occasionally been used.

As a group, Cryptogamae are paired with the Phanerogamae or Spermatophyta, the seed plants. At one time, the cryptogams were formally recognised as a group within the plant kingdom. In his system for classification of all known plants and animals, Carl Linnaeus (1707–1778) divided the plant kingdom into 24 classes, [1] one of which was the "Cryptogamia". This included all plants with concealed reproductive organs. He divided Cryptogamia into four orders: Algae, Musci (bryophytes), Filices (ferns), and fungi, [2] but it had also traditionally included slime molds, and Cyanophyta. [3] The classification is now deprecated in Linnaean taxonomy. Cryptogams have been classified into three sub-kingdoms: Thallophyta, Bryophyta, and Pteridophyta. [3]

Not all cryptogams are treated as part of the plant kingdom today; the fungi, in particular, are a separate kingdom, more closely related to animals than plants, while blue-green algae are a phylum of bacteria. Therefore, in contemporary plant systematics, "Cryptogamae" is not a taxonomically coherent group, but is polyphyletic. However, the names of all cryptogams are regulated by the International Code of Nomenclature for algae, fungi, and plants .

In human culture

An apocryphal story: it is said that during World War II, the British Government Code and Cypher School recruited Geoffrey Tandy, a marine biologist expert in cryptogams, to Station X, Bletchley Park, when someone confused these with cryptograms. [4] [5] [6] However, the story is a myth; though Tandy did indeed work at Bletchley, he was not recruited by mistake. At the time the field of cryptography was very new, and so it was typical to hire those with education and expertise in other fields. [7]

Related Research Articles

<span class="mw-page-title-main">Botany</span> Study of plant life

Botany, also called plant science, plant biology or phytology, is the science of plant life and a branch of biology. A botanist, plant scientist or phytologist is a scientist who specialises in this field. The term "botany" comes from the Ancient Greek word βοτάνη meaning "pasture", "herbs" "grass", or "fodder"; βοτάνη is in turn derived from βόσκειν, "to feed" or "to graze". Traditionally, botany has also included the study of fungi and algae by mycologists and phycologists respectively, with the study of these three groups of organisms remaining within the sphere of interest of the International Botanical Congress. Nowadays, botanists study approximately 410,000 species of land plants of which some 391,000 species are vascular plants, and approximately 20,000 are bryophytes.

<span class="mw-page-title-main">Linnaean taxonomy</span> Rank based classification system for organisms

Linnaean taxonomy can mean either of two related concepts:

  1. The particular form of biological classification (taxonomy) set up by Carl Linnaeus, as set forth in his Systema Naturae (1735) and subsequent works. In the taxonomy of Linnaeus there are three kingdoms, divided into classes, and the classes divided into lower ranks in a hierarchical order.
  2. A term for rank-based classification of organisms, in general. That is, taxonomy in the traditional sense of the word: rank-based scientific classification. This term is especially used as opposed to cladistic systematics, which groups organisms into clades. It is attributed to Linnaeus, although he neither invented the concept of ranked classification nor gave it its present form. In fact, it does not have an exact present form, as "Linnaean taxonomy" as such does not really exist: it is a collective (abstracting) term for what actually are several separate fields, which use similar approaches.
<span class="mw-page-title-main">Genus</span> Taxonomic rank directly above species

Genus is a taxonomic rank above species and below family as used in the biological classification of living and fossil organisms as well as viruses. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.

<span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

<span class="mw-page-title-main">Kingdom (biology)</span> Taxonomic rank

In biology, a kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla.

<span class="mw-page-title-main">Family (biology)</span> Taxonomic rank between genus and order

Family is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between order and genus. A family may be divided into subfamilies, which are intermediate ranks between the ranks of family and genus. The official family names are Latin in origin; however, popular names are often used: for example, walnut trees and hickory trees belong to the family Juglandaceae, but that family is commonly referred to as the "walnut family".

<span class="mw-page-title-main">Order (biology)</span> Taxonomic rank between class and family

Order is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between family and class. In biological classification, the order is a taxonomic rank used in the classification of organisms and recognized by the nomenclature codes. An immediately higher rank, superorder, is sometimes added directly above order, with suborder directly beneath order. An order can also be defined as a group of related families.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Taxon</span> Grouping of biological populations

In biology, a taxon is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and given a particular ranking, especially if and when it is accepted or becomes established. It is very common, however, for taxonomists to remain at odds over what belongs to a taxon and the criteria used for inclusion, especially in the context of rank-based ("Linnaean") nomenclature. If a taxon is given a formal scientific name, its use is then governed by one of the nomenclature codes specifying which scientific name is correct for a particular grouping.

<span class="mw-page-title-main">Tribe (biology)</span> Taxonomic rank between family and genus

In biology, a tribe is a taxonomic rank above genus, but below family and subfamily. It is sometimes subdivided into subtribes. By convention, all taxa ranked above species are capitalized, including both tribe and subtribe.

<span class="mw-page-title-main">Race (biology)</span> Informal rank in the taxonomic hierarchy, below the level of subspecies

In biological taxonomy, race is an informal rank in the taxonomic hierarchy for which various definitions exist. Sometimes it is used to denote a level below that of subspecies, while at other times it is used as a synonym for subspecies. It has been used as a higher rank than strain, with several strains making up one race. Races may be genetically distinct populations of individuals within the same species, or they may be defined in other ways, e.g. geographically, or physiologically. Genetic isolation between races is not complete, but genetic differences may have accumulated that are not (yet) sufficient to separate species.

Plant taxonomy is the science that finds, identifies, describes, classifies, and names plants. It is one of the main branches of taxonomy.

<span class="mw-page-title-main">Saccharomycotina</span> Subdivision of fungi

Saccharomycotina is a subdivision (subphylum) of the division (phylum) Ascomycota in the kingdom Fungi. It comprises most of the ascomycete yeasts. The members of Saccharomycotina reproduce by budding and they do not produce ascocarps.

The history of phycology is the history of the scientific study of algae. Human interest in plants as food goes back into the origins of the species, and knowledge of algae can be traced back more than two thousand years. However, only in the last three hundred years has that knowledge evolved into a rapidly developing science.

<span class="mw-page-title-main">Taxonomic rank</span> Level in a taxonomic hierarchy

In biology, taxonomic rank is the relative level of a group of organisms in an ancestral or hereditary hierarchy. A common system of biological classification (taxonomy) consists of species, genus, family, order, class, phylum, kingdom, and domain. While older approaches to taxonomic classification were phenomenological, forming groups on the basis of similarities in appearance, organic structure and behavior, methods based on genetic analysis have opened the road to cladistics, a method of classification of animals and plants according to the proportion of measurable or like characteristics that they have in common. it is assumed that the higher the proportion of characteristics that two organisms share, the more recently they both came from a common ancestor.

<span class="mw-page-title-main">Cultivated plant taxonomy</span>

Cultivated plant taxonomy is the study of the theory and practice of the science that identifies, describes, classifies, and names cultigens—those plants whose origin or selection is primarily due to intentional human activity. Cultivated plant taxonomists do, however, work with all kinds of plants in cultivation.

<span class="mw-page-title-main">Phylum</span> High level taxonomic rank for organisms sharing a similar body plan

In biology, a phylum is a level of classification or taxonomic rank below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent. Depending on definitions, the animal kingdom Animalia contains about 31 phyla, the plant kingdom Plantae contains about 14 phyla, and the fungus kingdom Fungi contains about 8 phyla. Current research in phylogenetics is uncovering the relationships among phyla within larger clades like Ecdysozoa and Embryophyta.

<span class="mw-page-title-main">Seed plant</span> Clade of seed plants

A seed plant or spermatophyte, also known as a phanerogam or a phaenogam, is any plant that produces seeds. It is a category of embryophyte that includes most of the familiar land plants, including the flowering plants and the gymnosperms, but not ferns, mosses, or algae.

Botany is a natural science concerned with the study of plants.The main branches of botany (also referred to as "plant science") are commonly divided into three groups: core topics, concerned with the study of the fundamental natural phenomena and processes of plant life, the classification and description of plant diversity; applied topics which study the ways in which plants may be used for economic benefit in horticulture, agriculture and forestry; and organismic topics which focus on plant groups such as algae, mosses or flowering plants.

The initial version of a classification system of life by British zoologist Thomas Cavalier-Smith appeared in 1978. This initial system continued to be modified in subsequent versions that were published until he died in 2021. As with classifications of others, such as Carl Linnaeus, Ernst Haeckel, Robert Whittaker, and Carl Woese, Cavalier-Smith's classification attempts to incorporate the latest developments in taxonomy., Cavalier-Smith used his classifications to convey his opinions about the evolutionary relationships among various organisms, principally microbial. His classifications complemented his ideas communicated in scientific publications, talks, and diagrams. Different iterations might have a wider or narrow scope, include different groupings, provide greater or lesser detail, and place groups in different arrangements as his thinking changed. His classifications has been a major influence in the modern taxonomy, particularly of protists.

References

  1. Dixon, P. S. (1973). Biology of the Rhodophyta. Oliver and Boyd, Edinburgh. ISBN   0-05-002485-X.
  2. "Cryptogams". Royal Botanic Garden, Edinburgh. Archived from the original on 2007-11-18. Retrieved 2007-07-02.
  3. 1 2 Smith, Gilbert M. (1938). Cryptogamic Botany, Vol. 1. McGraw-Hill.
  4. Smithies, Sandy (19 January 1999). "Television Tuesday Watching brief". The Guardian . Retrieved 23 July 2015.
  5. Davies, Mike (20 January 1999). "Cracking the code at last of Station X". Birmingham Post .
  6. Hanks, Robert (20 January 1999). "Television Review". The Independent .
  7. Knighton, Andrew (2018-05-27). "The Debunked Yet Interesting Myth About How Seaweed Apparently Helped Break the Enigma Code". warhistoryonline. Retrieved 2024-05-13.