Amoeboflagellate

Last updated
The heterolobosean Naegleria fowleri can behave as an amoeba (center) or as a flagellate (right). Naegleria fowleri lifecycle stages.JPG
The heterolobosean Naegleria fowleri can behave as an amoeba (center) or as a flagellate (right).

An amoeboflagellate (pl.amoeboflagellates) is any eukaryotic organism capable of behaving as an amoeba and as a flagellate at some point during their life cycle. Amoeboflagellates present both pseudopodia and at least one flagellum, often simultaneously. [1] [2]

Contents

Occurrence

The amoeboflagellate cell type has been acquired numerous independent times across the evolution of protists (i.e. primarily unicellular eukaryotes that are not plants, fungi or animals). [3] Some examples of protist phyla with amoeboflagellate body types are:

The choanoflagellate Salpingoeca rosetta can switch between a swimming (flagellate) stage and a crawling (amoeboid) stage when subjected to a confined space. Salpingoeca rosetta elife-61037-fig1-E-P.png
The choanoflagellate Salpingoeca rosetta can switch between a swimming (flagellate) stage and a crawling (amoeboid) stage when subjected to a confined space.

The amoeboflagellate phenotype is present in numerous protists that have a crucial phylogenetic position near the origin of animals and fungi, within the vast clade known as Opisthokonta. It has been described in choanoflagellates such as Salpingoeca , filastereans such as Pigoraptor , and even some early-branching fungi such as Sanchytrium , [16] but it is absent in animals. [3] The two species of Pluriformea have a wide range of cell types, from cellular aggregations to amoeboflagellates. [17]

Notes

  1. This class belongs to a paraphyletic phylum that is in disuse, known as Apusozoa. [12] Although not a phylum itself, it is listed here with other phyla due to comprising an independent clade of organisms.

Related Research Articles

<span class="mw-page-title-main">Flagellate</span> Group of protists with at least one whip-like appendage

A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word flagellate also describes a particular construction characteristic of many prokaryotes and eukaryotes and their means of motion. The term presently does not imply any specific relationship or classification of the organisms that possess flagella. However, the term "flagellate" is included in other terms which are more formally characterized.

<span class="mw-page-title-main">Cercozoa</span> Group of single-celled organisms

Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Cercomonad</span> Order of single-celled organisms

Cercomonads are small amoeboflagellates, widespread in aqueous habitats and common in soils.

<span class="mw-page-title-main">Apusozoa</span> Phylum of micro-organisms

The Apusozoa are a paraphyletic phylum of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.

<i>Difflugia</i> Large genus of protists

Difflugia is the largest genus of Arcellinida, one of several groups of Tubulinea within the eukaryote supergroup Amoebozoa. Arcellinida species produce shells or tests from mineral particles or biogeonic elements and are thus commonly referred to as testate amoebae or shelled amoebae. Difflugia are particularly common in marshes and other freshwater habitats.

<span class="mw-page-title-main">Tubulinea</span> Class of protozoans

The Tubulinea are a major grouping of Amoebozoa, including most of the more familiar amoebae genera like Amoeba, Arcella, Difflugia and Hartmannella.

<span class="mw-page-title-main">Discosea</span> Class of amoebae

Discosea is a class of Amoebozoa, consisting of naked amoebae with a flattened, discoid body shape. Members of the group do not produce tubular or subcylindrical pseudopodia, like amoebae of the class Tubulinea. When a discosean is in motion, a transparent layer called hyaloplasm forms at the leading edge of the cell. In some discoseans, short "subpseudopodia" may be extended from this hyaloplasm, but the granular contents of the cell do not flow into these, as in true pseudopodia. Discosean amoebae lack hard shells, but some, like Cochliopodium and Korotnevella secrete intricate organic scales which may cover the upper (dorsal) surface of the cell. No species have flagella or flagellated stages of life.

<span class="mw-page-title-main">Protist</span> Eukaryotes other than animals, plants or fungi

A protist or protoctist is any eukaryotic organism that is not an animal, plant, or fungus. Protists do not form a natural group, or clade, but an artificial grouping of several independent clades that evolved from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Thecofilosea</span> Class of single-celled organisms

Thecofilosea is a class of unicellular testate amoebae belonging to the phylum Cercozoa. They are amoeboflagellates, organisms with flagella and pseudopodia, distinguished from other cercozoa by their scale-lacking test composed of organic material. They are closely related to the Imbricatea, a group of testate amoebae with tests composed of inorganic silica scales.

<i>Katabia</i> Genus of heterotrophic protists

Katabia is a genus of soil-dwelling heterotrophic flagellate cercozoans containing the single species Katabia gromovi, and the only member of family Katabiidae.

<span class="mw-page-title-main">Breviatea</span> Group of protists

Breviatea, commonly known as breviate amoebae, are a group of free-living, amitochondriate protists with uncertain phylogenetic position. They are biflagellate, and can live in anaerobic (oxygen-free) environments. They are currently placed in the Obazoa clade. They likely do not possess vinculin proteins. Their metabolism relies on fermentative production of ATP as an adaptation to their low-oxygen environment.

<span class="mw-page-title-main">Amoeba</span> Cellular body type

An amoeba, often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebae do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

<span class="mw-page-title-main">Ventrifilosa</span> Superclass of protists

Ventrifilosa is a highly diverse group of phagotrophic protists that glide through their flagella and emit filose pseudopods from their ventral side for feeding. Because of their mixture of amoeba and flagellate characteristics, they are amoeboflagellates. Members of this group are the Imbricatea, Sarcomonadea and Thecofilosea.

Minimassisteria is a marine bacterivorous genus of protists with only one species, M. diva, that presents three different lifestyle forms. It has a widespread geographic distribution. It is an amoeboflagellate most closely related to Massisteria, and together comprise the family Massisteriidae.

<span class="mw-page-title-main">Glissomonadida</span> Order of protists

The glissomonads are a group of bacterivorous gliding flagellated protists that compose the order Glissomonadida, in the amoeboflagellate phylum Cercozoa. They comprise a vast, largely undescribed diversity of soil and freshwater organisms. They are the sister group to cercomonads; the two orders form a solid clade of gliding soil-dwelling flagellates called Pediglissa.

<i>Syssomonas</i> Genus of protists

Syssomonas is a monotypic genus of unicellular flagellated protists containing the species Syssomonas multiformis. It is a member of Pluriformea inside the lineage of Holozoa, a clade containing animals and their closest protistan relatives. It lives in freshwater habitats. It has a complex life cycle that includes unicellular amoeboid and flagellated phases, as well as multicellular aggregates, depending on the growth medium and nutritional state.

References

  1. 1 2 Johan F De Jonckheere (6 August 2011). "Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri". Infection, Genetics and Evolution . 11 (7): 1520–1528. doi:10.1016/J.MEEGID.2011.07.023. ISSN   1567-1348. PMID   21843657. Wikidata   Q37917917.
  2. 1 2 Alexander P. Myl'nikov; Serguei A. Karpov (2004). "Review of diversity and taxonomy of cercomonads" (PDF). Protistology. 3 (4): 201–217. ISSN   1680-0826. Wikidata   Q124459772.
  3. 1 2 3 Thibaut Brunet; Marvin Albert; William Roman; Maxwell C Coyle; Danielle C Spitzer; Nicole King (15 January 2021). "A flagellate-to-amoeboid switch in the closest living relatives of animals". eLife . 10. doi:10.7554/ELIFE.61037. ISSN   2050-084X. PMC   7895527 . PMID   33448265. Wikidata   Q105870433.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. Sebastian Hess; Michael Melkonian (21 July 2014). "Ultrastructure of the Algivorous Amoeboflagellate Viridiraptor invadens (Glissomonadida, Cercozoa)". Protist . 165 (5): 605–635. doi:10.1016/J.PROTIS.2014.07.004. ISSN   1434-4610. PMID   25150610. Wikidata   Q42464422.
  5. Anna Maria Fiore-Donno; Tim Richter-Heitmann; Florine Degrune; et al. (11 June 2019). "Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland". Frontiers in Microbiology. 10: 1332. doi:10.3389/FMICB.2019.01332. ISSN   1664-302X. PMC   6579879 . PMID   31244819. Wikidata   Q64891960.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. David Bass; Akinori Yabuki; Sébastien Santini; Sarah Romac; Cédric Berney (4 December 2012). "Reticulamoeba is a long-branched Granofilosean (Cercozoa) that is missing from sequence databases". PLOS One . 7 (12): e49090. Bibcode:2012PLoSO...749090B. doi:10.1371/JOURNAL.PONE.0049090. ISSN   1932-6203. PMC   3514243 . PMID   23226495. Wikidata   Q34506390.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. 1 2 3 Thomas Cavalier-Smith; Ema E.-Y. Chao; Brian Oates (May 2004). "Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium". European Journal of Protistology . 40 (1): 21–48. doi:10.1016/J.EJOP.2003.10.001. ISSN   0932-4739. Wikidata   Q29399107.
  8. Emmo Hamann; Harald Gruber-Vodicka; Manuel Kleiner; et al. (9 June 2016). "Environmental Breviatea harbour mutualistic Arcobacter epibionts". Nature . 534 (7606): 254–8. doi:10.1038/NATURE18297. ISSN   1476-4687. PMC   4900452 . PMID   27279223. Wikidata   Q28828264.
  9. Jim Clark; Edward F. Haskins (2016). "Mycosphere Essays 3. Myxomycete spore and amoeboflagellate biology: a review". Mycosphere . 7 (2): 86–101. doi:10.5943/MYCOSPHERE/7/2/1. ISSN   2077-7019. Wikidata   Q117487619.
  10. Irina A. Milyutina; Vladimir V. Aleshin; Kirill A. Mikrjukov; OIga S. Kedrova; Nikolai B. Petrov (1 July 2001). "The unusually long small subunit ribosomal RNA gene found in amitochondriate amoeboflagellate Pelomyxa palustris: its rRNA predicted secondary structure and phylogenetic implication". Gene . 272 (1–2): 131–139. doi:10.1016/S0378-1119(01)00556-X. ISSN   0378-1119. PMID   11470518. Wikidata   Q48352141.
  11. Koryu Kin; Pauline Schaap (27 March 2021). "Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas". Genes . 12 (4): 487. doi:10.3390/GENES12040487. ISSN   2073-4425. PMC   8067170 . PMID   33801615. Wikidata   Q124470705.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. Jordi Paps; Luis A Medina-Chacón; Wyth Marshall; Hiroshi Suga; Iñaki Ruiz-Trillo (18 October 2012). "Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts". Protist . 164 (1): 2–12. doi:10.1016/J.PROTIS.2012.09.002. ISSN   1434-4610. PMC   4342546 . PMID   23083534. Wikidata   Q34307204.
  13. Marianne A Minge; Jeffrey D Silberman; Russell J S Orr; Thomas Cavalier-Smith; Kamran Shalchian-Tabrizi; Fabien Burki; Asmund Skjaeveland; Kjetill S Jakobsen (22 February 2009). "Evolutionary position of breviate amoebae and the primary eukaryote divergence". Proceedings of the Royal Society B. 276 (1657): 597–604. doi:10.1098/RSPB.2008.1358. ISSN   0962-8452. PMC   2660946 . PMID   19004754. Wikidata   Q24652846.
  14. Thomas Cavalier-Smith; Ema E Chao; Elizabeth A Snell; Cédric Berney; Anna Maria Fiore-Donno; Rhodri Lewis (23 August 2014). "Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa". Molecular Phylogenetics and Evolution . 81: 71–85. doi:10.1016/J.YMPEV.2014.08.012. ISSN   1055-7903. PMID   25152275. Wikidata   Q34434820.
  15. C A Broers; C K Stumm; G D Vogels; G Brugerolle (1 June 1990). "Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments". European Journal of Protistology . 25 (4): 369–380. doi:10.1016/S0932-4739(11)80130-6. ISSN   0932-4739. PMID   23196051. Wikidata   Q30579184.
  16. Luis Javier Galindo; Purificación López-García; Guifré Torruella; Sergey Karpov; David Moreira (17 August 2021). "Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota". Nature Communications . 12 (1). doi:10.1038/S41467-021-25308-W. ISSN   2041-1723. PMC   8371127 . PMID   34404788. Wikidata   Q113186376.
  17. Elisabeth Hehenberger; Denis Tikhonenkov; Martin Kolisko; Javier del Campo; Anton S Esaulov; Alexander P Mylnikov; Patrick J Keeling (15 June 2017). "Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals". Current Biology . 27 (13): 2043-2050.e6. doi:10.1016/J.CUB.2017.06.006. ISSN   0960-9822. PMID   28648822. Wikidata   Q40146126.