Glaucophyte

Last updated

Glaucophyta
Glaucocystis sp.jpg
Glaucocystis sp.
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Archaeplastida
Division: Glaucophyta
Skuja 1948
Class
  • Glaucocystophyceae Schaffner 1922
Synonyms
  • Glaucocystophyta Kies & Kremer, 1986

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, [1] [2] less common today than they were during the Proterozoic. [3] The stated number of species in the group varies from about 14 to 26. [4] [5] [6] Together with the red algae (Rhodophyta) and the green algae plus land plants (Viridiplantae or Chloroplastida), they form the Archaeplastida.

Contents

The glaucophytes are of interest to biologists studying the evolution of chloroplasts as they may be similar to the original algal type that led to the red algae and green plants, i.e. glaucophytes may be basal Archaeplastida. [1] [7] [4]

Unlike red and green algae, glaucophytes only have asexual reproduction. [8]

Characteristics

The plastids of glaucophytes are known as 'muroplasts', [9] 'cyanoplasts', or 'cyanelles'. Unlike the plastids in other organisms, they have a peptidoglycan layer, believed to be a relic of the endosymbiotic origin of plastids from cyanobacteria. [1] [10] Glaucophytes contain the photosynthetic pigment chlorophyll a. [1] Along with red algae [1] and cyanobacteria, they harvest light via phycobilisomes, structures consisting largely of phycobiliproteins. The green algae and land plants have lost that pigment. [11] Like red algae, and in contrast to green algae and plants, glaucophytes store fixed carbon in the cytosol. [12]

The most early-diverging genus is Cyanophora, which only has one or two plastids. When there are two, they are semi-connected. [13]

Glaucophytes have mitochondria with flat cristae, and undergo open mitosis without centrioles. Motile forms have two unequal flagella, which may have fine hairs and are anchored by a multilayered system of microtubules, both of which are similar to forms found in some green algae. [11]

Phylogeny

External

Together with red algae and Viridiplantae (green algae and land plants), glaucophytes form the Archaeplastida – a group of plastid-containing organisms that may share a unique common ancestor that established an endosymbiotic association with a cyanobacterium. The relationship among the three groups remains uncertain, although it is most likely that glaucophytes diverged first: [4]

Archaeplastida

Glaucophyta

Red algae

Viridiplantae

The alternative, that glaucophytes and red algae form a clade, has been shown to be less plausible, but cannot be ruled out. [4]

Internal

The internal phylogeny of the glaucophytes and the number of genera and species varies considerably among taxonomic sources. A phylogeny of the Glaucophyta published in 2017 divided the group into three families, and includes five genera: [14]

Glaucophyta
Cyanophoraceae

Cyanophora

Gloeochaetaceae

Cyanoptyche

Gloeochaete

Glaucocystidaceae

Glaucocystopsis

Glaucocystis

Taxonomy

A 2019 list of the described glaucophyte species has the same three subdivisions, treated as orders, but includes a further five unplaced possible species, producing a total of between 14 and 19 possible species. [4]

As of March 2022, AlgaeBase divided glaucophytes into only two groups, placing Cyanophora in Glaucocystales rather than Cyanophorales (however the entry was dated 2011). [15] AlgaeBase included a total of 26 species in nine genera: [16]

None of the species of Glaucophyta is particularly common in nature. [1]

The glaucophytes were considered before as part of family Oocystaceae, in the order Chlorococcales. [17]

Related Research Articles

<span class="mw-page-title-main">Chlorophyceae</span> Class of green algae

The Chlorophyceae are one of the classes of green algae, distinguished mainly on the basis of ultrastructural morphology. They are usually green due to the dominance of pigments chlorophyll a and chlorophyll b. The chloroplast may be discoid, plate-like, reticulate, cup-shaped, spiral- or ribbon-shaped in different species. Most of the members have one or more storage bodies called pyrenoids located in the chloroplast. Pyrenoids contain protein besides starch. Some green algae may store food in the form of oil droplets. They usually have a cell wall made up of an inner layer of cellulose and outer layer of pectose.

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it is a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it is the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<span class="mw-page-title-main">Plastid</span> Plant cell organelles that perform photosynthesis and store starch

The plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracellular endosymbiotic cyanobacteria. Examples include chloroplasts, chromoplasts, and leucoplasts.

<span class="mw-page-title-main">Chlamydomonadales</span> Order of green algae

Chlamydomonadales, also known as Volvocales, are an order of flagellated or pseudociliated green algae, specifically of the Chlorophyceae. Chlamydomonadales can form planar or spherical colonies. These vary from Gonium up to Volvox. Each cell has two flagella, and is similar in appearance to Chlamydomonas, with the flagella throughout the colony moving in coordination.

<span class="mw-page-title-main">Golden algae</span> Class of algae

The Chrysophyceae, usually called chrysophytes, chrysomonads, golden-brown algae or golden algae are a large group of algae, found mostly in freshwater. Golden algae is also commonly used to refer to a single species, Prymnesium parvum, which causes fish kills.

The green algae are a group consisting of the Prasinodermophyta and its unnamed sister which contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae. Many species live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

Charophyta is a group of freshwater green algae, called charophytes, sometimes treated as a division, yet also as a superdivision or an unranked clade. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes, with the class Zygnematophyceae as a sister group.

<span class="mw-page-title-main">Viridiplantae</span> Clade of archaeplastids including green algae and the land plants

Viridiplantae constitute a clade of eukaryotic organisms that comprises approximately 450,000–500,000 species that play important roles in both terrestrial and aquatic ecosystems. They include the green algae, which are primarily aquatic, and the land plants (embryophytes), which emerged from within them. Green algae traditionally excludes the land plants, rendering them a paraphyletic group. However it is accurate to think of land plants as a kind of alga. Since the realization that the embryophytes emerged from within the green algae, some authors are starting to include them. They have cells with cellulose in their cell walls, and primary chloroplasts derived from endosymbiosis with cyanobacteria that contain chlorophylls a and b and lack phycobilins. Corroborating this, a basal phagotroph archaeplastida group has been found in the Rhodelphydia.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Eustigmatophyte</span> A small group of algae with marine, freshwater and soil-living species

Eustigmatophytes are a small group of eukaryotic forms of algae that includes marine, freshwater and soil-living species.

Oocystaceae is a family of green algae, in the order Chlorellales. The type genus is Oocystis.

<span class="mw-page-title-main">Tetrasporaceae</span> Family of algae

The Tetrasporaceae are a family of green algae, specifically of the Chlamydomonadales.

Valkanoviella is a monotypic genus of green algae, in the family Chlorococcaceae. It only contains one known species, Valkanoviella vaucheriaeBourrelly, 1965.

The Mesostigmatophyceae are a class of basal green algae found in freshwater. In a narrow circumscription, the class contains a single genus, Mesostigma. AlgaeBase then places the order within its circumscription of Charophyta. A clade containing Chlorokybus and Spirotaenia may either be added, or treated as a sister, with Chlorokybus placed in a separate class, Chlorokybophyceae. When broadly circumscribed, Mesostigmatophyceae may be placed as sister to all other green algae, or as sister to all Streptophyta.

<i>Paulinella</i> Genus of single-celled organisms

Paulinella is a genus of at least eleven species including both freshwater and marine amoeboids. Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone.

Mesostigma is a genus of unicellular biflagellate freshwater green algae, with a single species Mesostigma viride, covered by an outer layer of basket‐like scales instead of a cell wall. As of February 2022, AlgaeBase classified it as the only genus in the family Mesostigmataceae, the only family in the order Mesostigmatales, the only order in the class Mesostigmatophyceae. It is now considered to be one of the earliest diverging members of green plants/algae (Viridiplantae).

<span class="mw-page-title-main">Klebsormidiaceae</span> Family of algae

The Klebsormidiaceae are a family containing five genera of charophyte green alga forming multicellular, non-branching filaments. The genus Chlorokybus was previously included as well, but this problematic and poorly known genus is now placed in a separate class Chlorokybophyceae.

<span class="mw-page-title-main">Red algae</span> Division of plant life

Red algae, or Rhodophyta, are one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater environments, with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.

<i>Cyanophora paradoxa</i> Species of alga

Cyanophora paradoxa is a freshwater species of Glaucophyte that is used as a model organism. C. paradoxa has two cyanelles or chloroplasts where photosynthesis occurs. Cyanelles are unusual organelles in that they retain a rudimentary peptidoglycan wall. The cyanelle genome of C. paradoxa strain LB 555 was sequenced and published in 1995. The nuclear genome was also sequenced and published in 2012.

Tribonema is a genus of filamentous, freshwater yellow-green algae. The holotype for the genus is the species Tribonema bombycina (C.Agardh) Derbès & Solier.

References

  1. 1 2 3 4 5 6 Keeling, Patrick J. (2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany . 91 (10): 1481–1493. doi: 10.3732/ajb.91.10.1481 . PMID   21652304.
  2. Genomic Insights Into the Biology of Algae
  3. Cruzan, Mitchell B. (2018). Evolutionary Biology. Oxford University Press. p. 20. ISBN   978-0-19-088268-6.
  4. 1 2 3 4 5 Figueroa-Martinez, Francisco; Jackson, Christopher; Reyes-Prieto, Adrian (2019). "Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity". Genome Biology and Evolution. 11 (1): 174–188. doi:10.1093/gbe/evy268. PMC   6330054 . PMID   30534986.
  5. The monoplastidic bottleneck in algae and plant evolution | Journal of Cell Science
  6. Guiry, M.D.; Guiry, G.M. "Glaucophyta". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway. Retrieved 2022-02-28.
  7. Kim, Eunsoo; Graham, Linda E. (2008). Redfield, Rosemary Jeanne (ed.). "EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata". PLoS ONE . 3 (7): e2621. Bibcode:2008PLoSO...3.2621K. doi: 10.1371/journal.pone.0002621 . PMC   2440802 . PMID   18612431.
  8. Walker, Timothy (2012). Plants: A Very Short Introduction. Oxford University Press. p. 10. ISBN   978-0-19-958406-2.
  9. Wise, Robert R.; Hoober, J. Kenneth, eds. (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN   978-1-4020-4061-0.
  10. Miyagishima, Shin-ya; Kabeya, Yukihiro; Sugita, Chieko; Sugita, Mamoru; Fujiwara, Takayuki (2014). "DipM is required for peptidoglycan hydrolysis during chloroplast division". BMC Plant Biology. 14: 57. doi: 10.1186/1471-2229-14-57 . PMC   4015805 . PMID   24602296.
  11. 1 2 Skuja, A. (1948). Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsalienses 9(3): 1-399.Guiry, M.D.; Guiry, G.M. "Glaucophyta". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway.
  12. Ball, S.; Colleoni, C.; Cenci, U.; Raj, J. N.; Tirtiaux, C. (10 January 2011). "The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis". Journal of Experimental Botany. 62 (6): 1775–1801. doi: 10.1093/jxb/erq411 . PMID   21220783.
  13. de Vries, Jan; Gould, Sven B. (2017-01-01). "The monoplastidic bottleneck in algae and plant evolution". Journal of Cell Science. The Company of Biologists. 131 (2). doi: 10.1242/jcs.203414 . ISSN   1477-9137. PMID   28893840.
  14. Price, Dana C.; Steiner, Jürgen M.; Yoon, Hwan Su; Bhattacharya, Debashish; Löffelhardt, Wolfgang (2016). "Glaucophyta". Handbook of the Protists. pp. 1–65. doi:10.1007/978-3-319-32669-6_42-1. ISBN   978-3-319-32669-6.
  15. Guiry, M.D.; Guiry, G.M. "Cyanophora". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway. Retrieved 2022-03-01.
  16. Guiry, M.D.; Guiry, G.M. "Glaucophyta". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway. Retrieved 2022-03-01.
  17. "Phycokey - Glaucocystis".