Dictyoglomus | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Dictyoglomi Patel 2021 [1] |
Class: | Dictyoglomi Patel 2012 |
Order: | Dictyoglomales Patel 2012 |
Family: | Dictyoglomaceae Patel 2012 |
Genus: | Dictyoglomus Saiki et al. 1985 |
Type species | |
Dictyoglomus thermophilum Saiki et al. 1985 | |
Species [2] [3] | |
| |
Synonyms | |
|
Dictyoglomus is a genus of bacterium, [4] given its own Phylum, called the Dictyoglomi. This organism is extremely thermophilic , meaning it thrives at extremely high temperatures. It is chemoorganotrophic , meaning it derives energy by metabolizing organic molecules. This organism is of interest because it elaborates an enzyme, xylanase, which digests xylan, a heteropolymer of the pentose sugar xylose. By pretreating wood pulp with this enzyme, paper manufacturers can achieve comparable levels of whiteness with much less chlorine bleach.
It has been described as Gram-negative, with a triple-layered wall. [5]
A thermophile is an organism—a type of extremophile—that thrives at relatively high temperatures, between 41 and 122 °C. Many thermophiles are archaea, though some of them are bacteria and fungi. Thermophilic eubacteria are suggested to have been among the earliest bacteria.
The Aquificota phylum is a diverse collection of bacteria that live in harsh environmental settings. The name Aquificota was given to this phylum based on an early genus identified within this group, Aquifex, which is able to produce water by oxidizing hydrogen. They have been found in springs, pools, and oceans. They are autotrophs, and are the primary carbon fixers in their environments. These bacteria are Gram-negative, non-spore-forming rods. They are true bacteria as opposed to the other inhabitants of extreme environments, the Archaea.
The Thermotogota are a phylum of the domain Bacteria. The phylum contains a single class, Thermotogae. The phylum Thermotogota is composed of Gram-negative staining, anaerobic, and mostly thermophilic and hyperthermophilic bacteria.
Endo-1,4-β-xylanase is any of a class of enzymes that degrade the linear polysaccharide xylan into xylose, thus breaking down hemicellulose, one of the major components of plant cell walls:
In taxonomy, the Thermoplasmata are a class of the Euryarchaeota.
Thermoproteus is a genus of archaeans in the family Thermoproteaceae. These prokaryotes are thermophilic sulphur-dependent organisms related to the genera Sulfolobus, Pyrodictium and Desulfurococcus. They are hydrogen-sulphur autotrophs and can grow at temperatures of up to 95 °C.
Thermoproteales are an order of archaeans in the class Thermoprotei. They are the only organisms known to lack the SSB proteins, instead possessing the protein ThermoDBP that has displaced them. The rRNA genes of these organisms contain multiple introns, which can be homing endonuclease encoding genes, and their presence can impact the binding of "universal" 16S rRNA primers often used in environmental sequencing surveys.
In taxonomy, the Methanosarcinaceae are a family of the Methanosarcinales.
Pyrococcus is a genus of Thermococcaceaen archaean.
In taxonomy, Thermococcus is a genus of thermophilic Archaea in the family the Thermococcaceae.
In taxonomy, Staphylothermus is a genus of the Desulfurococcaceae.
Thermofilum is a genus of archaea in the family Thermofilaceae.
Chloracidobacterium is a genus of the Acidobacteriota. It is currently assigned to the family Acidobacteriaceae, but phylogenetic evidence suggests that it belongs in Blastocatellia.
Thermococcus celer is a Gram-negative, spherical-shaped archaeon of the genus Thermococcus. The discovery of T. celer played an important role in rerooting the tree of life when T. celer was found to be more closely related to methanogenic Archaea than to other phenotypically similar thermophilic species. T. celer was the first archaeon discovered to house a circularized genome. Several type strains of T. celer have been identified: Vu13, ATCC 35543, and DSM 2476.
Keratinases are proteolytic enzymes that digest keratin.
Caldicellulosiruptor bescii is a species of thermophilic, anaerobic cellulolytic bacteria. It was isolated from a geothermally heated freshwater pool in the Valley of Geysers on the Kamchatka Peninsula in Russia in 1990. The species was originally named Anaerocellum thermophilum, but reclassified in 2010, based on genomic data.
Myceliophthora thermophila is an ascomycete fungus that grows optimally at 45–50 °C (113–122 °F). It efficiently degrades cellulose and is of interest in the production of biofuels. The genome has recently been sequenced, revealing the full range of enzymes used by this organism for the degradation of plant cell wall material.
Thermomyces lanuginosus is a species of thermophilic fungus that belongs to Thermomyces, a genus of hemicellulose degraders. It is classified as a deuteromycete and no sexual form has ever been observed. It is the dominant fungus of compost heaps, due to its ability to withstand high temperatures and use complex carbon sources for energy. As the temperature of compost heaps rises and the availability of simple carbon sources decreases, it is able to out compete pioneer microflora. It plays an important role in breaking down the hemicelluloses found in plant biomass due to the many hydrolytic enzymes that it produces, such as lipolase, amylase, xylanase, phytase, and chitinase. These enzymes have chemical, environmental, and industrial applications due to their hydrolytic properties. They are used in the food, petroleum, pulp and paper, and animal feed industries, among others. A few rare cases of endocarditis due to T. lanuginosus have been reported in humans.
Cellulosimicrobium cellulans is a Gram-positive bacterium from the genus of Cellulosimicrobium. Cellulosimicrobium cellulans can cause rare opportunistic infections. The strain EB-8-4 of this species can be used for stereoselective allylic hydroxylation of D-limonene to (+)-trans-carveol.
The Ignavibacteriales are an order of obligately anaerobic, non-photosynthetic bacteria that are closely related to the green sulfur bacteria.